The Energy of Kneser Graphs

被引:0
|
作者
Lv, Benjian
Wang, Kaishun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this note, by proving two combinatorial identities, we compute the energy of Kneser graphs.
引用
收藏
页码:763 / 765
页数:3
相关论文
共 50 条
  • [21] Random Kneser graphs and hypergraphs
    Kupavskii, Andrey
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [22] Choice number of Kneser graphs
    Bulankina, Vera
    Kupavskii, Andrey
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [23] Bipartite Kneser Graphs are Hamiltonian
    Torsten Mütze
    Pascal Su
    Combinatorica, 2017, 37 : 1207 - 1219
  • [24] Kneser Graphs and their Complements are Hyperenergetic
    Akbari, S.
    Moazami, F.
    Zare, S.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (02) : 361 - 368
  • [25] Local coloring of Kneser graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    DISCRETE MATHEMATICS, 2008, 308 (24) : 5922 - 5927
  • [26] On the treewidth of generalized Kneser graphs
    Metsch, Klaus
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 86 : 477 - 486
  • [27] Sparse Kneser graphs are Hamiltonian
    Mutze, Torsten
    Nummenpalo, Jerri
    Walczak, Bartosz
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (04): : 1253 - 1275
  • [28] Geodetic convexity and kneser graphs
    Bedo, Marcos
    Leite, Joao V. S.
    Oliveira, Rodolfo A.
    Protti, Fabio
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 449
  • [29] On the diameter of generalized Kneser graphs
    Chen, Yongzhu
    Wang, Yingqian
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4276 - 4279
  • [30] Treewidth of the generalized Kneser graphs
    Liu, Ke
    Cao, Mengyu
    Lu, Mei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):