Nanoclay-modulated oxygen vacancies of metal oxide

被引:90
|
作者
Zhao, Qihang [1 ,2 ]
Fu, Liangjie [1 ,2 ]
Jiang, Denghui [1 ,2 ]
Ouyang, Jing [1 ,2 ]
Hu, Yuehua [1 ,2 ]
Yang, Huaming [1 ,2 ,3 ]
Xi, Yunfei [4 ]
机构
[1] Cent S Univ, Ctr Mineral Mat, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Hunan Key Lab Mineral Mat & Applicat, Changsha 410083, Hunan, Peoples R China
[3] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[4] Queensland Univ Technol, Sch Earth Environm & Biol Sci, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
CO3O4; NANOPARTICLES; SOLAR-ENERGY; ORANGE II; DEGRADATION; REDUCTION; GRAPHENE; DEFECTS; NANOCRYSTALS; NANOSHEETS; OXIDATION;
D O I
10.1038/s42004-019-0112-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation of oxygen vacancies is one of the most critical factors that can improve the electronic and catalytic properties of metal oxides, in which an important challenge is to lower the formation energy of oxygen vacancies at the interface structure. Here we show that clay surfaces rich with hydroxyl groups can induce the formation of oxygen vacancies in metal oxide catalysts. Based on density functional theory calculations, kaolinite is shown to hinder the surface dehydration process of Co3O4 nanoparticles, and enhances the charge transfer process at the interface by the highly diffusible protons. Experimental results confirm that vacancy-rich Co3O4 is easily produced by a reduction method and kaolinite enhances the formation of oxygen vacancies and divalent cobalt on the nanoparticle surface. As expected, the defective Co3O4/kaolinite exhibits enhanced catalytic and electrocatalytic performances. This finding provides an improved way to design efficient clay-based catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electronic Structure of Aluminum Oxide with Oxygen Vacancies
    Korotina, M. A.
    Kurmaeva, E. Z.
    PHYSICS OF METALS AND METALLOGRAPHY, 2018, 119 (08): : 707 - 712
  • [22] Epitaxial oxide ionotronics: Interfaces and oxygen vacancies
    Wenderott, Jill K.
    Billo, Tadesse
    Fong, Dillon D.
    APL MATERIALS, 2024, 12 (05):
  • [23] Oxygen vacancies: The (in)visible friend of oxide electronics
    Gunkel, F.
    Christensen, D., V
    Chen, Y. Z.
    Pryds, N.
    APPLIED PHYSICS LETTERS, 2020, 116 (12)
  • [24] Study on oxygen vacancies in gallium oxide nanostructures
    Anqi Gou
    Yi Cheng
    Fanghao Zhu
    Tao Yu
    Hongming Yin
    Li Che
    Jixiang Chen
    Xizhen Zhang
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [25] Electronic structure of oxygen vacancies in hafnium oxide
    Perevalov, T. V.
    Aliev, V. Sh.
    Gritsenko, V. A.
    Saraev, A. A.
    Kaichev, V. V.
    MICROELECTRONIC ENGINEERING, 2013, 109 : 21 - 23
  • [26] OXYGEN VACANCIES + ELECTRICAL CONDUCTION IN METAL OXIDES
    KEVANE, CJ
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (5A): : 1431 - &
  • [27] Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction
    Li, Heen
    Xu, Xiaoyue
    Lin, Xiaohu
    Chen, Jianmin
    Zhu, Kunling
    Peng, Fei
    Gao, Faming
    NANOSCALE, 2023, 15 (08) : 4071 - 4079
  • [28] Justification of the Schottky emission model at the interface of a precious metal and a perovskite oxide with dilute oxygen vacancies
    Numata, Ken
    THIN SOLID FILMS, 2006, 515 (04) : 2635 - 2643
  • [29] Femtosecond visualization of oxygen vacancies in metal oxides
    Zhang, Xinping
    Tang, Fawei
    Wang, Meng
    Zhan, Wangbin
    Hu, Huaxin
    Li, Yurong
    Friend, Richard H.
    Song, Xiaoyan
    SCIENCE ADVANCES, 2020, 6 (10)
  • [30] Harnessing the Oxygen Vacancies in Metal Oxides for Nitroreduction
    Rajendran, K.
    Jagadeesan, D.
    CHEMCATCHEM, 2024, 16 (11)