Min-max Predictive Control of a Pilot Plant using a QP Approach

被引:0
|
作者
Gruber, J. K. [1 ]
Ramirez, D. R. [1 ]
Alamo, T. [1 ]
Bordons, C. [1 ]
Camacho, E. F. [1 ]
机构
[1] Univ Seville, Dept Ingn Sistemas & Automat, Escuela Super Ingenieros, Seville, Spain
关键词
D O I
10.1109/CDC.2008.4739059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The practical implementation of Min-Max MPC (MMMPC) controllers is limited by the computational burden required to compute the control law. This problem can be circumvented by using approximate solutions or upper bounds of the worst possible case of the performance index. In a previous work, the authors presented a computationally efficient MMMPC control strategy in which a close approximation of the solution of the min-max problem is computed using a quadratic programming problem. In this paper, this approach is validated through its application to a pilot plant in which the temperature of a reactor is controlled. The behavior of the system and the controller are illustrated by means of experimental results.
引用
收藏
页码:3415 / 3420
页数:6
相关论文
共 50 条
  • [41] Min-Max Predictive Control of a Five-Phase Induction Machine
    Ramirez, Daniel R.
    Martin, Cristina
    Kowal G, Agnieszka
    Arahal, Manuel R.
    ENERGIES, 2019, 12 (19)
  • [42] Robust min-max model predictive control of linear systems with constraints
    Zeman, J
    Rohal'-Ilkiv, B
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 930 - 935
  • [43] Explicit solution of min-max model predictive control for uncertain systems
    Gao, Yu
    Sun, Li Ning
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (04): : 461 - 468
  • [44] A MIN-MAX APPROACH TO RESERVOIR MANAGEMENT
    ORLOVSKI, S
    RINALDI, S
    SONCINISESSA, R
    WATER RESOURCES RESEARCH, 1984, 20 (11) : 1506 - 1514
  • [45] Robust Precision Position Tracking of Planar Motors Using Min-Max Model Predictive Control
    Huang, Su-Dan
    Peng, Kai-Yu
    Cao, Guang-Zhong
    Wu, Chao
    Xu, Junqi
    He, Jiangbiao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 13265 - 13276
  • [46] Feedback min-max model predictive control using robust one-step sets
    Cychowski, Marcin T.
    O'Mahony, Tom
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (07) : 813 - 823
  • [47] Self-triggered adaptive model predictive control of constrained nonlinear systems: A min-max approach
    Zhang, Kunwu
    Liu, Changxin
    Shi, Yang
    AUTOMATICA, 2022, 142
  • [48] A Min-Max Model Predictive Control Approach to Robust Power Management in Ambulatory Wireless Sensor Networks
    Witheephanich, Kritchai
    Escano, Juan M.
    de la Pena, David Munoz
    Hayes, Martin J.
    IEEE SYSTEMS JOURNAL, 2014, 8 (04): : 1060 - 1073
  • [49] Efficient implementation of constrained min-max model predictive control with bounded uncertainties:: a vertex rejection approach
    Alamo, T
    Ramírez, DR
    Camacho, EF
    JOURNAL OF PROCESS CONTROL, 2005, 15 (02) : 149 - 158
  • [50] On input-to-state stability of min-max nonlinear model predictive control
    Lazar, M.
    De la Pena, D. Munoz
    Heemels, W. P. M. H.
    Alamo, T.
    SYSTEMS & CONTROL LETTERS, 2008, 57 (01) : 39 - 48