GLOBAL BEHAVIOR OF TWO THIRD ORDER RATIONAL DIFFERENCE EQUATIONS WITH QUADRATIC TERMS

被引:14
|
作者
Abo-Zeid, R. [1 ]
机构
[1] Higher Inst Engn & Technol, Dept Basic Sci, Al Obour Cairo, Egypt
关键词
difference equation; forbidden set; periodic solution; unbounded solution;
D O I
10.1515/ms-2017-0210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine the forbidden sets, introduce an explicit formula for the solutions and discuss the global behaviors of solutions of the difference equations x(n+1) = ax(n)x(n-1)/+/- bx(n-1) + cx(n-2), n = 0, 1, ... where a, b, c are positive real numbers and the initial conditions x(-2), x(-1), x(0) are real numbers. (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:147 / 158
页数:12
相关论文
共 50 条
  • [41] Global behavior of a rational second order difference equation
    M. Gümüş
    R. Abo-Zeid
    Journal of Applied Mathematics and Computing, 2020, 62 : 119 - 133
  • [42] Global behavior of a rational second order difference equation
    Gumus, M.
    Abo-Zeid, R.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 119 - 133
  • [43] Global Behavior of a Higher Order Rational Difference Equation
    Abo-Zeid, R.
    FILOMAT, 2016, 30 (12) : 3265 - 3276
  • [44] Global Behavior of a Fourth Order Rational Difference Equation
    Abo-Zeid, R.
    Al-Shabi, M. A.
    THAI JOURNAL OF MATHEMATICS, 2018, 16 (03): : 665 - 674
  • [45] Dynamical Behavior Of A Third-Order Rational Difference Equation
    Zhang, Liang
    Huo, Hai-Feng
    Miao, Li-Ming
    Xiang, Hong
    APPLIED MATHEMATICS E-NOTES, 2006, 6 : 268 - 275
  • [46] On the boundedness of solutions of a class of third-order rational difference equations
    Huang, Ying Sue
    Knopf, Peter M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (10) : 1541 - 1587
  • [47] On Some Solvable Systems of Some Rational Difference Equations of Third Order
    Al-Basyouni, Khalil S.
    Elsayed, Elsayed M.
    MATHEMATICS, 2023, 11 (04)
  • [48] Global behavior and oscillation of a third order difference equation
    Abo-Zeid, R.
    QUAESTIONES MATHEMATICAE, 2021, 44 (09) : 1261 - 1280
  • [49] Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms
    Kulenovic, M. R. S.
    Moranjkic, S.
    Nurkanovic, Z.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3477 - 3489
  • [50] On the asymptotic behavior of a system of two rational difference equations
    Gleska, Alina
    Magnucka-Blandzi, Ewa
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) : 2345 - 2353