GENERICITY OF NONUNIFORM HYPERBOLICITY IN DIMENSION 3

被引:12
|
作者
Rodriguez Hertz, Jana [1 ]
机构
[1] Univ Republica, IMERL Fac Ingn, Montevideo, Uruguay
关键词
Nonuniform hyperbolicity; domination of the Oseledets splitting; partially hyperbolic sets with positive measure; ZERO LYAPUNOV EXPONENTS; STABLE ERGODICITY; DIFFEOMORPHISMS; MAPS;
D O I
10.3934/jmd.2012.6.121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a generic conservative diffeomorphism of a closed connected 3-manifold M, the Oseledets splitting is a globally dominated splitting. Moreover, either all Lyapunov exponents vanish almost everywhere, or else the system is nonuniformly hyperbolic and ergodic. This is the 3-dimensional version of the well-known result by Mane-Bochi [14, 4], stating that a generic conservative surface diffeomorphism is either Anosov or all Lyapunov exponents vanish almost everywhere. This result was inspired by and answers in the positive in dimension 3 a conjecture by Avila-Bochi [2].
引用
收藏
页码:121 / 138
页数:18
相关论文
共 50 条
  • [41] Scaled dimension and nonuniform complexity
    Hitchcock, JM
    Lutz, JH
    Mayordomo, E
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 278 - 290
  • [42] Scaled dimension and nonuniform complexity
    Hitchcock, JM
    Lutz, JH
    Mayordomo, E
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (02) : 97 - 122
  • [43] Hyperbolicity and the Effective Dimension of Spatially Extended Dissipative Systems
    Yang, Hong-liu
    Takeuchi, Kazumasa A.
    Ginelli, Francesco
    Chate, Hugues
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2009, 102 (07)
  • [44] THE C1 DENSITY OF NONUNIFORM HYPERBOLICITY IN Cr CONSERVATIVE DIFFEOMORPHISMS
    Liang, Chao
    Yang, Yun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1539 - 1552
  • [45] Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Langa, Jose A.
    Oliveira-Sousa, Alexandre N.
    ASYMPTOTIC ANALYSIS, 2022, 129 (01) : 1 - 27
  • [46] Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity
    Li, Mengmeng
    Wang, JinRong
    O'Regan, Donal
    Feckan, Michal
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (03) : 341 - 364
  • [47] NONUNIFORM CENTER BUNCHING AND THE GENERICITY OF ERGODICITY AMONG C1 PARTIALLY HYPERBOLIC SYMPLECTOMORPHISMS
    Avila, Artur
    Bochi, Jairo
    Wilkinson, Amie
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (06): : 931 - 979
  • [48] A Characterization of Nonuniform Multiwavelets Using Dimension Function
    Nadya A. S. Atlouba
    Shiva Mittal
    Niraj K. Shukla
    Results in Mathematics, 2017, 72 : 1239 - 1255
  • [49] A Characterization of Nonuniform Multiwavelets Using Dimension Function
    Atlouba, Nadya A. S.
    Mittal, Shiva
    Shukla, Niraj K.
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1239 - 1255
  • [50] Subgroups, hyperbolicity and cohomological dimension for totally disconnected locally compact groups
    Arora, S.
    Castellano, I.
    Cook, G. Corob
    Martinez-Pedroza, E.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (01) : 223 - 249