Almost-everywhere convergence and polynomials

被引:0
|
作者
Boshernitzan, Michael [1 ]
Wierdl, Mate [2 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
[2] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
pointwise ergodic theorems along subsequences; polynomials;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by Gamma the set of pointwise good sequences: sequences of real numbers (a(k)) such that for any measure-preserving flow (U-t)(t is an element of R) on a probability space and for any f is an element of L-infinity, the averages 1/n Sigma(n)(k=1) f (Ua(k)x) converge almost everywhere. We prove the following two results. 1. If f: (0,infinity) -> R is continuous and if (f(ku+ v))(k >= 1)is an element of Gamma for all u, v > 0, then f is a polynomial on some subinterval J subset of (0,infinity) of positive length. 2. If f: (0,infinity) -> R is real analytic and if (f(ku))(k >= 1)is an element of Gamma for all u > 0, then f is a polynomial on the whole domain [0,infinity). These results can be viewed as converses of Bourgain's polynomial ergodic theorem which claims that every polynomial sequence lies in Gamma.
引用
收藏
页码:465 / 470
页数:6
相关论文
共 50 条
  • [41] Almost Everywhere Convergence of Convolution Measures
    Reinhold, Karin
    Savvopoulou, Anna K.
    Wedrychowicz, Christopher M.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 830 - 841
  • [42] Almost everywhere convergence for noncommutative spaces
    Budde, Christian
    Labuschagne, Louis
    Steyn, Claud
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [43] ALMOST EVERYWHERE CONVERGENCE OF FOURIER INTEGRALS
    CHEN, CP
    LIN, CC
    ARCHIV DER MATHEMATIK, 1995, 64 (04) : 333 - 336
  • [44] On the Gaussian character of almost everywhere in convergence
    Weber, M
    FUNDAMENTA MATHEMATICAE, 2001, 167 (01) : 23 - 54
  • [45] ALMOST EVERYWHERE CONVERGENCE OF ERGODIC AVERAGES
    Buczolich, Zoltan
    REAL ANALYSIS EXCHANGE, 2008, 34 (01) : 1 - 15
  • [46] ALMOST EVERYWHERE CONVERGENCE OF NEWTON METHOD
    COSNARD, M
    MASSE, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (09): : 549 - 552
  • [47] Almost everywhere convergence for noncommutative spaces
    Christian Budde
    Louis Labuschagne
    Claud Steyn
    Banach Journal of Mathematical Analysis, 2022, 16
  • [48] ON ALMOST EVERYWHERE CONVERGENCE OF FOURIER SERIES
    YADAV, BS
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 63 : 703 - &
  • [49] Almost everywhere convergence of spline sequences
    Paul F. X. Müller
    Markus Passenbrunner
    Israel Journal of Mathematics, 2020, 240 : 149 - 177
  • [50] ALMOST EVERYWHERE CONVERGENCE OF ORTHOGONAL SERIES
    KITA, H
    ACTA MATHEMATICA HUNGARICA, 1985, 46 (1-2) : 73 - 80