High-order Numerical Quadratures in a Tetrahedron with an Implicitly Defined Curved Interface

被引:17
|
作者
Cui, Tao [1 ,2 ]
Leng, Wei [1 ,2 ]
Liu, Huaqing [1 ,2 ]
Zhang, Linbo [1 ,2 ]
Zheng, Weiying [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, 55 East Zhongguancun Rd, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2020年 / 46卷 / 01期
基金
中国国家自然科学基金;
关键词
Quadrature; tetrahedral mesh; curved surface; extended finite element; high order; FINITE-ELEMENT-METHOD; SET; INTEGRATION; REFINEMENT; PARALLEL; DOMAINS;
D O I
10.1145/3372144
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a shape regular tetrahedron and a curved surface that is defined implicitly by a nonlinear level set function and divides the tetrahedron into two sub-domains, a general-purpose, robust, and high-order numerical algorithm is proposed in this article for computing both volume integrals in the sub-domains and surface integrals on their common boundary. The algorithm uses a direct approach that decomposes 3D volume integrals or 2D surface integrals into multiple 1D integrals and computes the 1D integrals with Gaussian quadratures. It only requires finding roots of univariate nonlinear functions in given intervals and evaluating the integrand, the level set function, and the gradient of the level set function at given points. It can achieve arbitrarily high accuracy by increasing the orders of Gaussian quadratures, and it does not need extra a priori knowledge about the integrand and the level set function. The code for the algorithm is freely available in the open-source finite element toolbox Parallel Hierarchical Grid (PHG) and can serve as a basic building block for implementing 3D high-order numerical algorithms involving implicit interfaces or boundaries.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Comparison of high-order curved finite elements
    Sevilla, Ruben
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (08) : 719 - 734
  • [22] A METHOD FOR NUMERICAL EVALUATION OF SINGULAR INTEGRALS IN CURVED HEXAHEDRA AND WITH HIGH-ORDER SOURCE FUNCTIONS
    Gharakhani, Adrin
    Stock, Mark J.
    PROCEEDINGS OF ASME 2022 FLUIDS ENGINEERING DIVISION SUMMER MEETING, FEDSM2022, VOL 2, 2022,
  • [23] A HIGH ORDER METHOD FOR THE APPROXIMATION OF INTEGRALS OVER IMPLICITLY DEFINED HYPERSURFACES
    Drescher, Lukas
    Heumann, Holger
    Schmidt, Kersten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2592 - 2615
  • [24] A study of high-order immersed finite element spaces by pointwise interface conditions on curved interfaces
    Adjerid, Slimane
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 331 - 353
  • [25] NUMERICAL-SIMULATION OF INTERFACE WAVES BY HIGH-ORDER SPECTRAL MODELING TECHNIQUES
    PRIOLO, E
    CARCIONE, JM
    SERIANI, G
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 95 (02): : 681 - 693
  • [26] High-order numerical method for 2D biharmonic interface problem
    Tavakoli Tameh, Mahboubeh
    Shakeri, Fatemeh
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (10) : 1662 - 1678
  • [27] High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures
    Elgindy, Kareem T.
    APPLIED NUMERICAL MATHEMATICS, 2017, 113 : 1 - 25
  • [28] High order numerical quadratures to one dimensional delta function integrals
    Wen, Xin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04): : 1825 - 1846
  • [29] NUMERICAL DIFFERENTIATION BY HIGH-ORDER INTERPOLATION
    HOFFMAN, P
    REDDY, KC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06): : 979 - 987
  • [30] Numerical integration over implicitly defined domains for higher order unfitted finite element methods
    Olshanskii M.A.
    Safin D.
    Lobachevskii Journal of Mathematics, 2016, 37 (5) : 582 - 596