Interrogating Novel Areas of Chemical Space for Drug Discovery using Chemoinformatics

被引:24
|
作者
Medina-Franco, Jose L. [1 ]
机构
[1] Torrey Pines Inst Mol Studies, Port St Lucie, FL 34987 USA
关键词
chemoinformatics; combinatorial libraries; data mining; molecular complexity; natural products; NATURAL-PRODUCTS; COMBINATORIAL CHEMISTRY; VISUAL CHARACTERIZATION; PHYSICOCHEMICAL PROPERTIES; DIVERSITY QUANTIFICATION; MOLECULAR COMPLEXITY; ACTIVITY LANDSCAPES; COMPOUND LIBRARIES; IN-VIVO; VISUALIZATION;
D O I
10.1002/ddr.21034
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Preclinical Research Chemoinformatic approaches have an essential role in the systematic description and visualization of the chemical space for drug discovery projects. These methods enable the quantitative comparison of general screening collections and the systematic classification of approved drugs and databases annotated with biological activity to define biologically and medicinally relevant chemical spaces. Profiling of chemical diversity, molecular complexity, and physicochemical properties of compound libraries using chemoinformatic approaches provide a solid basis to generate hypothesis of how to interrogate novel areas of chemical space for enhanced drug discovery. This commentary is focused on the application of chemoinformatic approaches to mine, and to navigate the chemical space of compound collections. The discussion is centered on the concept of chemical space, types of compound libraries used in drug discovery programs, applications of chemical space mining and visualization using chemoinformatic methods, and strategies to expand the pharmaceutical relevant chemical space with emphasis on the notion of molecular complexity.
引用
收藏
页码:430 / 438
页数:9
相关论文
共 50 条
  • [1] Chemoinformatics and drug discovery
    Xu, J
    Hagler, A
    MOLECULES, 2002, 7 (08): : 566 - 600
  • [2] Chemoinformatics: A tool for modern drug discovery
    Karthikeyan, M.
    Krishnan, S.
    International Journal of Information Technology and Management, 2002, 1 (01) : 69 - 82
  • [3] Machine learning in chemoinformatics and drug discovery
    Lo, Yu-Chen
    Rensi, Stefano E.
    Torng, Wen
    Altman, Russ B.
    DRUG DISCOVERY TODAY, 2018, 23 (08) : 1538 - 1546
  • [4] Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database
    Reymond, Jean-Louis
    Awale, Mahendra
    ACS CHEMICAL NEUROSCIENCE, 2012, 3 (09): : 649 - 657
  • [5] Challenges for chemoinformatics education in drug discovery
    Wild, DJ
    Wiggins, GD
    DRUG DISCOVERY TODAY, 2006, 11 (9-10) : 436 - 439
  • [6] Chemoinformatics Strategies for Leishmaniasis Drug Discovery
    Ferreira, Leonardo L. G.
    Andricopulo, Adriano D.
    FRONTIERS IN PHARMACOLOGY, 2018, 9
  • [7] Chemoinformatics: manipulating chemical information to facilitate decision-making in drug discovery
    Ritchie, TJ
    DRUG DISCOVERY TODAY, 2001, 6 (16) : 813 - 814
  • [8] Flow chemistry as a tool to access novel chemical space for drug discovery
    Lopez, Enol
    Lourdes Linares, Maria
    Alcazar, Jesus
    FUTURE MEDICINAL CHEMISTRY, 2020, 12 (17) : 1547 - 1563
  • [9] Chemical Space Mimicry for Drug Discovery
    Yuan, William
    Jiang, Dadi
    Nambiar, Dhanya K.
    Liew, Lydia P.
    Hay, Michael P.
    Bloomstein, Joshua
    Lu, Peter
    Turner, Brandon
    Le, Quynh-Thu
    Tibshirani, Robert
    Khatri, Purvesh
    Moloney, Mark G.
    Koong, Albert C.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (04) : 875 - 882
  • [10] Visualization of the Chemical Space in Drug Discovery
    Medina-Franco, Jose L.
    Martinez-Mayorga, Karina
    Giulianotti, Marc A.
    Houghten, Richard A.
    Pinilla, Clemencia
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2008, 4 (04) : 322 - 333