Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation

被引:38
|
作者
Nagasawa, Hiroki [1 ]
Yamamoto, Yuta [1 ]
Tsuda, Nobukazu [1 ]
Kanezashi, Masakoto [1 ]
Yoshioka, Tomohisa [1 ]
Tsuru, Toshinori [1 ]
机构
[1] Hiroshima Univ, Dept Chem Engn, Higashihiroshima, Hiroshima 7398527, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Atmospheric-pressure plasma; Plasma-enhanced chemical vapor deposition; Microporous silica membrane; Gas separation; DIELECTRIC BARRIER DISCHARGE; ORGANOSILICA MEMBRANES; HIGH-TEMPERATURE; THIN-FILMS; PECVD; PRECURSORS; COATINGS; PERMEATION; HMDSO; SPECTROSCOPY;
D O I
10.1016/j.memsci.2016.11.067
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Microporous silica membranes with high permselectivity are fabricated by atmospheric-pressure plasma enhanced chemical vapor deposition (AP-PECVD) using hexamethyldisiloxane as the precursor in plasma working gases of pure argon, and mixture of argon with oxygen or nitrogen. A silica membrane grown using plasma composed of a mixture of argon and nitrogen displays highly efficient gas separation, with selectivities for He/N-2 and He/SF6 of 196 and 820, respectively, and He permeance of 1.1x10(-7) mol m(-2) S-1 Pa-1 at 50 degrees C. Characterization of the membranes by FTIR and X-ray photoelectron spectroscopies reveals a relatively high concentration of carbon remains in the membrane grown using a mixture of argon and nitrogen. Annealing at elevated temperature after plasma deposition improves the permselectivity of the membranes. After annealing at 300 degrees C, the permeance of He at 50 degrees C increased to 4.0x10(-7) mol m(-2) s(-1) Pa-1 with no marked decrease of selectivity (He/N-2 =98, He/SF6 =770). The annealed membrane also exhibits remarkable permselectivity for CO2, showing selectivities for CO2/N-2 and CO2/CH4 of 46 and 166, respectively, with CO2 permeance of 1.9 x10(-7) mol m(-2) s(-1) Pa-1 at 50 degrees C. AP-PECVD shows great promise to fabricate microporous silica membranes highly permselective for gas separation.
引用
收藏
页码:644 / 651
页数:8
相关论文
共 50 条
  • [11] Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition
    Kim, Gwihyun
    Park, Seran
    Shin, Hyunsu
    Song, Seungho
    Oh, Hoon-Jung
    Ko, Dae Hong
    Choi, Jung -Il
    Baik, Seung Jae
    AIP ADVANCES, 2017, 7 (12):
  • [12] Deposition of tetramethylsilane on the glass by plasma-enhanced chemical vapor deposition and atmospheric pressure plasma treatment
    Chen, Ko-Shao
    Liao, Shu-Chuan
    Tsao, Shao-Hsuan
    Inagaki, Norihiro
    Wu, Hsin-Ming
    Chou, Chin-Yen
    Chen, Wei-Yu
    SURFACE & COATINGS TECHNOLOGY, 2013, 228 : S33 - S36
  • [13] Characteristics of carbon nanotubes deposited by using low-temperature atmospheric-pressure plasma-enhanced chemical vapor deposition
    Kim, C
    Lee, Y
    Kyung, S
    Yeom, G
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (04) : 918 - 921
  • [14] Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature
    Barankin, M. D.
    Gonzalez, E., II
    Ladwig, A. M.
    Hicks, R. F.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (10) : 924 - 930
  • [15] Atmospheric-pressure plasma-enhanced chemical vapor deposition of UV-shielding TiO2 coatings on transparent plastics
    Nagasawa, Hiroki
    Xu, Jing
    Kanezashi, Masakoto
    Tsuru, Toshinori
    MATERIALS LETTERS, 2018, 228 : 479 - 481
  • [16] Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity
    Lee, Donghee
    Yang, Sung
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 162 (01): : 425 - 434
  • [17] Facile Fabrication of a Two-Dimensional TMD/Si Heterojunction Photodiode by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition
    Kim, Yonghun
    Kwon, Soyeong
    Seo, Eun-Joo
    Nam, Jae Hyeon
    Jang, Hye Yeon
    Kwon, Se-Hun
    Kwon, Jung-Dae
    Kim, Dong-Wook
    Cho, Byungjin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) : 36136 - 36143
  • [18] Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition of a-SiCN:H Films: Role of Precursors on the Film Growth and Properties
    Guruvenket, Srinivasan
    Andrie, Steven
    Simon, Mark
    Johnson, Kyle W.
    Sailer, Robert A.
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (10) : 5293 - 5299
  • [19] Plasma-enhanced chemical vapor deposition of graphene optimized by pressure
    Ma, Chen
    Yu, Hugo
    Yu, Kehan
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10):
  • [20] Analysis of mass transport in an atmospheric pressure remote plasma-enhanced chemical vapor deposition process
    Cardoso, R. P.
    Belmonte, T.
    Henrion, G.
    Gries, T.
    Tixhon, E.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)