DEWE: A novel tool for executing differential expression RNA-Seq workflows in biomedical research

被引:9
|
作者
Lopez-Fernandez, Hugo [1 ,2 ,3 ,4 ,5 ]
Blanco-Miguez, Aitor [1 ,2 ,6 ]
Fdez-Riverola, Florentino [1 ,2 ,3 ]
Sanchez, Borja [6 ]
Lourenco, Analia [1 ,2 ,3 ,7 ]
机构
[1] Univ Vigo, ESEI Escuela Super Ingn Informat, Edificio Politecn,Campus Univ Lagoas S-N, Orense 32004, Spain
[2] Univ Vigo, CINBIO Ctr Invest Biomed, Campus Univ Lagoas Marcosende, Vigo 36310, Spain
[3] Hosp Alvaro Cunqueiro, SERGAS UVIGO, Galicia Sur Hlth Res Inst IIS Galicia Sur, SING Res Grp, Vigo 36312, Spain
[4] Univ Porto, Rua Alfredo Allen 208, P-4200135 Porto, Portugal
[5] IBMC, Rua Alfredo Allen 208, P-4200135 Porto, Portugal
[6] CSIC, IPLA, Dept Microbiol & Biochem Dairy Prod, Paseo Rio Linares S-N, Villaviciosa 33300, Asturias, Spain
[7] Univ Minho, CEB Ctr Biol Engn, Campus Gualtar, P-4710057 Braga, Portugal
关键词
Differential expression; RNA-Seq; Open-source software; Workflow management; Translational application; BIOCONDUCTOR PACKAGE; GENE-REGULATION; TRANSCRIPTOME; DISCOVERY; STRINGTIE; PIPELINE; HISAT;
D O I
10.1016/j.compbiomed.2019.02.021
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Transcriptomics profiling aims to identify and quantify all transcripts present within a cell type or tissue at a particular state, and thus provide information on the genes expressed in specific experimental settings, differentiation or disease conditions. RNA-Seq technology is becoming the standard approach for such studies, but available analysis tools are often hard to install, configure and use by users without advanced bioinformatics skills. Methods: Within reason, DEWE aims to make RNA-Seq analysis as easy for non-proficient users as for experienced bioinformaticians. DEWE supports two well-established and widely used differential expression analysis workflows: using Bowtie2 or HISAT2 for sequence alignment; and, both applying StringTie for quantification, and Ballgown and edgeR for differential expression analysis. Also, it enables the tailored execution of individual tools as well as helps with the management and visualisation of differential expression results. Results: DEWE provides a user-friendly interface designed to reduce the learning curve of less knowledgeable users while enabling analysis customisation and software extension by advanced users. Docker technology helps overcome installation and configuration hurdles. In addition, DEWE produces high quality and publication-ready outputs in the form of tab-delimited files and figures, as well as helps researchers with further analyses, such as pathway enrichment analysis. Conclusions: The abilities of DEWE are exemplified here by practical application to a comparative analysis of monocytes and monocyte-derived dendritic cells, a study of clinical relevance. DEWE installers and documentation are freely available at https://www.sing-group.org/dewe.
引用
收藏
页码:197 / 205
页数:9
相关论文
共 50 条
  • [11] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [12] The impact of amplification on differential expression analyses by RNA-seq
    Swati Parekh
    Christoph Ziegenhain
    Beate Vieth
    Wolfgang Enard
    Ines Hellmann
    Scientific Reports, 6
  • [13] Identifying differential expression for RNA-seq data with no replication
    Gim, Jungsoo
    Park, Taesung
    2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2012,
  • [14] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [15] Power analysis for RNA-Seq differential expression studies
    Lianbo Yu
    Soledad Fernandez
    Guy Brock
    BMC Bioinformatics, 18
  • [16] From RNA-seq reads to differential expression results
    Alicia Oshlack
    Mark D Robinson
    Matthew D Young
    Genome Biology, 11
  • [17] From RNA-seq reads to differential expression results
    Oshlack, Alicia
    Robinson, Mark D.
    Young, Matthew D.
    GENOME BIOLOGY, 2010, 11 (12):
  • [18] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    BMC Bioinformatics, 14
  • [19] The impact of amplification on differential expression analyses by RNA-seq
    Parekh, Swati
    Ziegenhain, Christoph
    Vieth, Beate
    Enard, Wolfgang
    Hellmann, Ines
    SCIENTIFIC REPORTS, 2016, 6
  • [20] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481