k-separator chordal graphs: leafage and subfamilies

被引:0
|
作者
Markenzon, Lilian [1 ]
da Costa Pereira, Paulo Renato [2 ]
Waga, Christina F. E. M. [3 ]
机构
[1] Univ Fed Rio de Janeiro, NCE, Rio De Janeiro, Brazil
[2] Dept Policia Fed, Brasilia, DF, Brazil
[3] Univ Estado Rio de Janeiro, IME, BR-20550011 Rio De Janeiro, Brazil
关键词
chordal graph; minimal vertex separator; leafage; k-sep chordal graph; k-caterpillar; MINIMAL VERTEX SEPARATORS; TIME ALGORITHM; SUBCLASSES; TREES;
D O I
10.1111/j.1475-3995.2012.00875.x
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The leafage of a chordal graph G is the minimum number of leaves among the clique-trees of G. In this paper, based on properties of the minimal vertex separators, the leafage of a k-separator chordal graph is determined in linear time. This result allows establishment of the relationship of some subfamilies of chordal graphs, such as k-trees, interval and uniquely representable chordal graphs.
引用
收藏
页码:681 / 688
页数:8
相关论文
共 50 条
  • [21] Chordal Graphs
    Arneson, Broderick
    Rudnicki, Piotr
    FORMALIZED MATHEMATICS, 2006, 14 (03): : 79 - 92
  • [22] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Marthe Bonamy
    Matthew Johnson
    Ioannis Lignos
    Viresh Patel
    Daniël Paulusma
    Journal of Combinatorial Optimization, 2014, 27 : 132 - 143
  • [23] Chordal multipartite graphs and chordal colorings
    McKee, Terry A.
    DISCRETE MATHEMATICS, 2007, 307 (17-18) : 2309 - 2314
  • [24] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Bonamy, Marthe
    Johnson, Matthew
    Lignos, Ioannis
    Patel, Viresh
    Paulusma, Daniel
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 132 - 143
  • [25] Chordal graphs and their clique graphs
    Galinier, P
    Habib, M
    Paul, C
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1995, 1017 : 358 - 371
  • [26] Characterizing k-chordal unichord-free graphs
    McKee, Terry A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [27] k-neighborhood-covering and -independence problems for chordal graphs
    Hwang, SF
    Chang, GJ
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (04) : 633 - 643
  • [28] THE MAXIMUM K-COLORABLE SUBGRAPH PROBLEM FOR CHORDAL GRAPHS
    YANNAKAKIS, M
    GAVRIL, F
    INFORMATION PROCESSING LETTERS, 1987, 24 (02) : 133 - 137
  • [29] Clique roots of K4-free chordal graphs
    Faal, Hossein Teimoori
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (01) : 105 - 111
  • [30] A Dirac-type characterization of k-chordal graphs
    Krithika, R.
    Mathew, Rogers
    Narayanaswamy, N. S.
    Sadagopan, N.
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2865 - 2867