Removability of an isolated singularity for anisotropic elliptic equations with absorption

被引:8
|
作者
Skrypnik, I. I. [1 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, Donetsk, Ukraine
关键词
D O I
10.1070/SM2008v199n07ABEH003952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the investigation of solutions with a point singularity of the general elliptic equation [GRAPHICS] A method for deriving new point wise, estimates for the solution mid integral estimates for the gradient of the solution is developed. Precise conditions are established on the behavior of the term characterizing the absorption to ensure the wit-existence of solutions with a point singularity.
引用
收藏
页码:1033 / 1050
页数:18
相关论文
共 50 条
  • [41] Isolated singularities of solutions to quasi-linear elliptic equations with absorption
    Liskevich, Vitali
    Skrypnik, I. I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 536 - 544
  • [42] Removable singularity of positive solutions for a critical elliptic system with isolated singularity
    Zhijie Chen
    Chang-Shou Lin
    Mathematische Annalen, 2015, 363 : 501 - 523
  • [43] Removable singularity of positive solutions for a critical elliptic system with isolated singularity
    Chen, Zhijie
    Lin, Chang-Shou
    MATHEMATISCHE ANNALEN, 2015, 363 (1-2) : 501 - 523
  • [44] Exact behavior around isolated singularity for semilinear elliptic equations with a log-type nonlinearity
    Ghergu, Marius
    Kim, Sunghan
    Shahgholian, Henrik
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 995 - 1003
  • [45] Removability of compact singular sets for nonlinear elliptic equations with p(x)-growth
    Shan, Yingying
    Fu, Yongqiang
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (02) : 151 - 165
  • [46] On anisotropic elliptic equations in bounded domains
    Tadie
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: ANALYTIC AND NUMERICAL TECHNIQUES, 2004, : 245 - 249
  • [47] On a class of fully anisotropic elliptic equations
    Barletta, Giuseppina
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [48] Anisotropic elliptic equations with VMO coefficients
    Shakhmurov, Veli B.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 1057 - 1062
  • [49] A class of elliptic equations in anisotropic spaces
    Lucas C. F. Ferreira
    Everaldo S. Medeiros
    Marcelo Montenegro
    Annali di Matematica Pura ed Applicata, 2013, 192 : 539 - 552
  • [50] Parallel multigrid for anisotropic elliptic equations
    Prieto, M
    Santiago, R
    Espadas, D
    Llorente, IM
    Tirado, F
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (01) : 96 - 114