PARAMETER-UNIFORM FINITE ELEMENT METHOD FOR TWO-PARAMETER SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION PROBLEMS

被引:38
|
作者
Kadalbajoo, M. K. [1 ]
Yadaw, Arjun Singh [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
关键词
Singular perturbation; boundary layer; Shishkin mesh; finite element method; reaction-diffusion; DIFFERENCE-SCHEMES; CONVERGENCE; MESH;
D O I
10.1142/S0219876212500478
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, parameter-uniform numerical methods for a class of singularly perturbed one-dimensional parabolic reaction-diffusion problems with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The method comprises a standard implicit finite difference scheme to discretize in temporal direction on a uniform mesh by means of Rothe's method and finite element method in spatial direction on a piecewise uniform mesh of Shishkin type. The method is shown to be unconditionally stable and accurate of order O(N-2(ln N)(2) + Delta t). Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A parameter-uniform numerical method for singularly perturbed Burgers' equation
    Derzie, Eshetu B.
    Munyakazi, Justin B.
    Gemechu, Tekle
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [42] A parameter-uniform numerical method for singularly perturbed Burgers’ equation
    Eshetu B. Derzie
    Justin B. Munyakazi
    Tekle Gemechu
    Computational and Applied Mathematics, 2022, 41
  • [43] A parameter uniform numerical method for a singularly perturbed two-parameter delay differential equation
    Kalaiselvan, Saravana Sankar
    Miller, John J. H.
    Sigamani, Valarmathi
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 90 - 110
  • [44] Second order parameter-uniform convergence for a finite difference method for a partially singularly perturbed linear parabolic system
    Franklin, Victor
    Miller, John J. H.
    Valarmathi, Sigamani
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (03) : 469 - 495
  • [45] Parameter-uniform convergence of a numerical method for a coupled system of singularly perturbed semilinear reaction-diffusion equations with boundary and interior layers
    Rao, S. Chandra Sekhara
    Chawla, Sheetal
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 : 223 - 239
  • [46] Parameter-uniform convergence analysis of a domain decomposition method for singularly perturbed parabolic problems with Robin boundary conditions
    Kumar, Sunil
    Aakansha
    Singh, Joginder
    Ramos, Higinio
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 2239 - 2261
  • [47] Combined finite volume element method for singularly perturbed reaction-diffusion problems
    Phongthanapanich, Sutthisak
    Dechaumphai, Pramote
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) : 177 - 185
  • [48] Parameter-uniform convergence analysis of a domain decomposition method for singularly perturbed parabolic problems with Robin boundary conditions
    Sunil Kumar
    Joginder Aakansha
    Higinio Singh
    Journal of Applied Mathematics and Computing, 2023, 69 : 2239 - 2261
  • [49] A Parameter-uniform Method for Two Parameters Singularly Perturbed Boundary Value Problems via Asymptotic Expansion
    Kumar, D.
    Yadaw, A. S.
    Kadalbajoo, M. K.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1525 - 1532
  • [50] A parameter uniform orthogonal spline collocation method for time delay singularly perturbed semilinear reaction-diffusion problems
    Howlader, Jewel
    Mishra, Pankaj
    Sharma, Kapil K.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (01) : 1077 - 1107