A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions

被引:19
|
作者
Katayama, Soichiro [1 ]
Ozawa, Tohru [2 ]
Sunagawa, Hideaki [3 ]
机构
[1] Wakayama Univ, Dept Math, Wakayama 6408510, Japan
[2] Waseda Univ, Dept Appl Phys, Shinjuku Ku, Tokyo 1698555, Japan
[3] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
SMALL AMPLITUDE SOLUTIONS; GLOBAL EXISTENCE; EQUATIONS; WAVE;
D O I
10.1002/cpa.21392
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for quadratic nonlinear Klein-Gordon systems in two space dimensions with masses satisfying the resonance relation. Under the null condition in the sense of J.-M. Delort, D. Fang, and R. Xue (J. Funct. Anal. 211 (2004), no. 2, 288323), we show the global existence of asymptotically free solutions if the initial data are sufficiently small in some weighted Sobolev space. Our proof is based on an algebraic characterization of nonlinearities satisfying the null condition. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1285 / 1302
页数:18
相关论文
共 50 条
  • [31] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [32] Nonlinear Klein-Gordon equation
    Appl Math Lett, 3 (09):
  • [33] Nonlinear Klein-Gordon equation
    Adomian, G
    APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10
  • [34] A system of quadratic nonlinear Klein-Gordon equations in 2d
    Hayashi, Nakao
    Naumkin, Pavel I.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (08) : 3615 - 3646
  • [35] Levinson's theorem for the Klein-Gordon equation in two dimensions
    Dong, SH
    Hou, XW
    Ma, ZQ
    PHYSICAL REVIEW A, 1999, 59 (02): : 995 - 1002
  • [36] Singular solitons and bifurcation analysis of quadratic nonlinear Klein-Gordon equation
    Song, Ming
    Liu, Zhengrong
    Zerrad, Essaid
    Biswas, Anjan
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1333 - 1340
  • [37] Levinson's theorem for the Klein-Gordon equation in two dimensions
    Dong, Shi-Hai
    Hou, Xi-Wen
    Ma, Zhong-Qi
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [38] Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions
    Masaki, Satoshi
    Segata, Jun-ichi
    Uriya, Kota
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 177 - 203
  • [39] Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations
    Machihara, S
    Nakanishi, K
    Ozawa, T
    MATHEMATISCHE ANNALEN, 2002, 322 (03) : 603 - 621
  • [40] Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations
    Shuji Machihara
    Kenji Nakanishi
    Tohru Ozawa
    Mathematische Annalen, 2002, 322 : 603 - 621