Kernel Conditional Density Estimation When the Regressor is Valued in a Semi-Metric Space

被引:10
|
作者
Laksaci, Ali [1 ]
Madani, Fethi [2 ]
Rachdi, Mustapha [2 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Dept Math, Sidi Bel Abbes 22000, Algeria
[2] Univ Grenoble 2, Lab AGIM, F-38040 Grenoble, France
关键词
Bandwidth selection; Conditional density; Conditional model; Cross-validation; Functional data; Kernel estimator; Small balls probability; Primary; 62G05; Secondary; 62G07; 62G08; 62G35; 62G20; OPTIMAL BANDWIDTH SELECTION; NONPARAMETRIC REGRESSION; PREDICTION; REGIONS;
D O I
10.1080/03610926.2011.633733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the conditional density estimation when the explanatory variable is functional. In fact, nonparametric kernel type estimator of the conditional density has been recently introduced when the regressor is valued in a semi-metric space. This estimator depends on a smoothing parameter which controls its behavior. Thus, we aim to construct and study the asymptotic properties of a data-driven criterion for choosing automatically and optimally this smoothing parameter. This criterion can be formulated in terms of a functional version of cross-validation ideas. Under mild assumptions on the unknown conditional density, it is proved that this rule is asymptotically optimal. A simulation study and an application on real data are carried out to illustrate, for finite samples, the behavior of our method. Finally, we mention that our results can also be considered as novel in the finite dimensional setting and several other open questions are raised in this article.
引用
收藏
页码:3544 / 3570
页数:27
相关论文
共 50 条
  • [31] Nonparametric conditional density estimation for censored data based on a recursive kernel
    Khardani, Salah
    Semmar, Sihem
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2541 - 2556
  • [32] Kernel Density Estimation of traffic accidents in a network space
    Xia, Zhixiao
    Yan, Jun
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2008, 32 (05) : 396 - 406
  • [33] Kernel spatial density estimation in infinite dimension space
    Sophie Dabo-Niang
    Anne-Françoise Yao
    Metrika, 2013, 76 : 19 - 52
  • [34] Parallel Space-Time Kernel Density Estimation
    Saule, Erik
    Panchananam, Dinesh
    Hohl, Alexander
    Tang, Wenwu
    Delmelle, Eric
    2017 46TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2017, : 483 - 492
  • [35] Kernel spatial density estimation in infinite dimension space
    Dabo-Niang, Sophie
    Yao, Anne-Francoise
    METRIKA, 2013, 76 (01) : 19 - 52
  • [36] Semi-supervised kernel density estimation for video annotation
    Wang, Meng
    Hua, Xian-Sheng
    Mei, Tao
    Hong, Richang
    Qi, Guojun
    Song, Yan
    Dai, Li-Rong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2009, 113 (03) : 384 - 396
  • [37] Wind pressure field reconstruction based on unbiased conditional kernel density estimation
    Liu, Shuoyu
    Luo, Ying
    Peng, Liuliu
    Jiang, Yan
    Meng, Ercong
    Li, Bo
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 223
  • [38] Kernel density estimation of conditional distributions to detect responses in satellite tag data
    Hewitt, Joshua
    Gelfand, Alan E.
    Quick, Nicola J.
    Cioffi, William R.
    Southall, Brandon L.
    DeRuiter, Stacy L.
    Schick, Robert S.
    ANIMAL BIOTELEMETRY, 2022, 10 (01)
  • [39] Kernel density estimation of conditional distributions to detect responses in satellite tag data
    Joshua Hewitt
    Alan E. Gelfand
    Nicola J. Quick
    William R. Cioffi
    Brandon L. Southall
    Stacy L. DeRuiter
    Robert S. Schick
    Animal Biotelemetry, 10
  • [40] Kernel conditional density and mode estimation for psi-weakly dependent observations
    Rih, Soumia
    Tatachak, Abdelkader
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (07) : 2072 - 2098