Representation of strongly truncated Riesz spaces

被引:6
|
作者
Boulabiar, Karim [1 ]
Hajji, Rawaa [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Lab Rech LATAO,GOSAEF, El Manar 2092, Tunisia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2020年 / 31卷 / 05期
关键词
Infinitely small; Spectrum; Truncation; Truncated Riesz space; Strong truncation; Representation; Riesz norm; Locally compact; Stone condition;
D O I
10.1016/j.indag.2020.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following a recent idea by Ball, we introduce the notion of strongly truncated Riesz space with a suitable spectrum. We prove that, under an extra Archimedean type condition, any strongly truncated Riesz space is isomorphic to a uniformly dense Riesz subspace of a C-0(X)-space. This turns out to be a direct generalization of the classical Kakutani Representation Theorem on Archimedean Riesz spaces with strong unit. Another representation theorem on normed Riesz spaces, due to Fremlin, will be obtained as a consequence of our main result. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:741 / 757
页数:17
相关论文
共 50 条
  • [31] A RIESZ REPRESENTATION THEOREM
    GOODRICH, RK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (03) : 629 - &
  • [32] ON RIESZ REPRESENTATION THEOREM
    CHOY, STL
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 35 (1-2): : 181 - 183
  • [33] RIESZ SPACES, FUNCTION SPACES AND SECTION SPACES
    PORTENIER, C
    COMMENTARII MATHEMATICI HELVETICI, 1971, 46 (03) : 289 - +
  • [34] THE RIESZ REPRESENTATION THEOREM
    Sunder, V. S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2008, 39 (06): : 467 - 481
  • [35] Amarts on Riesz Spaces
    Coenraad C.A. LABUSCHAGNE
    Bruce A.WATSON
    Acta Mathematica Sinica(English Series), 2008, 24 (02) : 329 - 342
  • [36] Mixingales on Riesz spaces
    Kuo, Wen-Chi
    Vardy, Jessica Joy
    Watson, Bruce Alastair
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 731 - 738
  • [37] SPACES OF RIESZ POTENTIALS
    SAMKO, SG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1976, 10 (05): : 1089 - 1117
  • [38] HOMOMORPHISMS OF RIESZ SPACES
    TUCKER, CT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A182 - A183
  • [39] HYPERARCHIMEDEAN RIESZ SPACES
    MOORE, LC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A182 - A182
  • [40] Polynomials on Riesz spaces
    Loane, John
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (01) : 71 - 78