Following a recent idea by Ball, we introduce the notion of strongly truncated Riesz space with a suitable spectrum. We prove that, under an extra Archimedean type condition, any strongly truncated Riesz space is isomorphic to a uniformly dense Riesz subspace of a C-0(X)-space. This turns out to be a direct generalization of the classical Kakutani Representation Theorem on Archimedean Riesz spaces with strong unit. Another representation theorem on normed Riesz spaces, due to Fremlin, will be obtained as a consequence of our main result. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.