Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process

被引:48
|
作者
Yang, Ming-Zhi [1 ]
Wu, Chyan-Chyi [2 ]
Dai, Ching-Liang [1 ]
Tsai, Wen-Jung [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Mech Engn, Taichung 402, Taiwan
[2] Tamkang Univ, Dept Mech & Electromech Engn, Tamsui 251, Taiwan
来源
SENSORS | 2013年 / 13卷 / 02期
关键词
energy harvesting; thermoelectric generator; thermocouple; CMOS; FABRICATION; DESIGN; CHIP;
D O I
10.3390/s130202359
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mu W at a temperature difference of 15 K.
引用
收藏
页码:2359 / 2367
页数:9
相关论文
共 50 条
  • [41] A Low-Power Thermoelectric Energy Harvesting System for High Internal Resistance Thermoelectric Generators
    Kunpeng Wang
    Mingjie Guan
    Fu Chen
    Wei-Hsin Liao
    Journal of Electronic Materials, 2019, 48 : 5375 - 5389
  • [42] A Low-Power Thermoelectric Energy Harvesting System for High Internal Resistance Thermoelectric Generators
    Wang, Kunpeng
    Guan, Mingjie
    Chen, Fu
    Liao, Wei-Hsin
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (09) : 5375 - 5389
  • [43] High performance analysis and optimization of metal halide perovskite-based thermoelectric generators for sustainable energy harvesting
    Lin, Shangchao
    Yan, Lifu
    Duan, Yiling
    Zhao, Lingling
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 47
  • [44] Measurement of the electric energy storage capacity in solar thermoelectric generators' energy harvesting modules
    Dias, Pedro C.
    Morais, Flavio J. O.
    Duarte, Luis F. C.
    Franca, Maria Bernadete M.
    Spengler, Anderson W.
    Cabot, Andreu
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (04):
  • [45] Bistability in a complementary metal oxide semiconductor inverter circuit
    Carroll, TL
    CHAOS, 2005, 15 (03)
  • [46] Energy Harvesting Using Symmetrical Electrostatic Generators
    de Queiroz, Antonio Carlos M.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 650 - 653
  • [47] Liquid Metal Composites for Flexible Thermoelectric Energy Harvesting
    Malakooti, Mohammad H.
    Zadan, Mason
    Kazem, Navid
    Majidi, Carmel
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XV, 2021, 11589
  • [48] Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process
    Mehta, Karan K.
    Orcutt, Jason S.
    Shainline, Jeffrey M.
    Tehar-Zahav, Ofer
    Sternberg, Zvi
    Meade, Roy
    Popovic, Milos A.
    Ram, Rajeev J.
    OPTICS LETTERS, 2014, 39 (04) : 1061 - 1064
  • [49] Phase State Analysis of Nickel Silicides in Complementary Metal-Oxide-Semiconductor Device Using Plasmon Energy Map
    Terada, Shohei
    Hirano, Tatsumi
    Hashikawa, Naoto
    Asayama, Kyoichiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (01)
  • [50] A Novel Sub-20 V Contact Gate Metal Oxide Semiconductor Field Effect Transistor with Fully Complementary Metal Oxide Semiconductor Compatible Process
    Lee, Te Liang
    Tsai, Ming Tsang
    King, Ya Chin
    Lin, Chrong Jung
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (04)