I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms

被引:6
|
作者
Wong, Kin Yau [1 ]
Fan, Cheng [2 ]
Tanioka, Maki [2 ,3 ]
Parker, Joel S. [2 ,3 ]
Nobel, Andrew B. [2 ,4 ,5 ]
Zeng, Donglin [2 ,5 ]
Lin, Dan-Yu [2 ,5 ]
Perou, Charles M. [2 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Cancer genomics; Data integration; Gene modules; Variable selection; BREAST-CANCER; LUNG-CANCER; REGRESSION; MODEL; REGULARIZATION; SELECTION; JOINT; AGE;
D O I
10.1186/s13059-019-1640-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We propose a statistical boosting method, termed I-Boost, to integrate multiple types of high-dimensional genomics data with clinical data for predicting survival time. I-Boost provides substantially higher prediction accuracy than existing methods. By applying I-Boost to The Cancer Genome Atlas, we show that the integration of multiple genomics platforms with clinical variables improves the prediction of survival time over the use of clinical variables alone; gene expression values are typically more prognostic of survival time than other genomics data types; and gene modules/signatures are at least as prognostic as the collection of individual gene expression data.
引用
收藏
页数:15
相关论文
共 27 条
  • [21] Predicting Tumor Volume Doubling Time and Progression-Free Survival in Untreated Patients from Patient-Derived-Xenograft (PDX) Models: A Translational Model-Based Approach
    Tosca, E. M.
    Ronchi, D.
    Rocchetti, M.
    Magni, P.
    AAPS JOURNAL, 2024, 26 (05):
  • [22] The revised myeloma comorbidity Index (R-MCI) in comparison with other comorbidity indices (CI) as a new approach for predicting overall survival (OS) and reducing treatment complications in multiple myeloma (MM) patients (pts)
    Schoeller, K.
    Ihorst, G.
    Scheubeck, S.
    Holler, M.
    Woerner, S. M.
    Reinhardt, H.
    Mueller, S.
    Duyster, J.
    Waesch, R.
    Engelhardt, M.
    ONCOLOGY RESEARCH AND TREATMENT, 2019, 42 : 189 - 189
  • [23] Global real-time quantitative reverse transcription-polymerase chain reaction detecting proto-oncogenes associated with 14q32 chromosomal translocation as a valuable marker for predicting survival in multiple myeloma
    Inagaki, Atsushi
    Tajima, Emi
    Uranishi, Miyuki
    Totani, Haruhito
    Asao, Yu
    Ogura, Hiroka
    Masaki, Ayako
    Yoshida, Tatsuya
    Mori, Fumiko
    Ito, Asahi
    Yano, Hiroki
    Ri, Masaki
    Kayukawa, Satoshi
    Kataoka, Takae
    Kusumoto, Shigeru
    Ishida, Takashi
    Hayami, Yoshihito
    Hanamura, Ichiro
    Komatsu, Hirokazu
    Inagaki, Hiroshi
    Matsuda, Yasufumi
    Ueda, Ryuzo
    Iida, Shinsuke
    LEUKEMIA RESEARCH, 2013, 37 (12) : 1648 - 1655
  • [24] I"Departamento de Automacao e Sistemas, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil tDepartamento de Informatica, Universidad de Almeria, Almeria, SpainUnified PID Tuning Approach for Stable, Integrative, and Unstable Dead-Time Processes⊥
    Normey-Rico, Julio E.
    Luis Guzman, Jose
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (47) : 16811 - 16819
  • [25] An Amplicon-Targeted Ultra-Deep Sequencing Approach Reveals the Presence at the Onset of Multiple Myeloma and the Selection over Time of TP53 Sub-Clonal Variants, Which Adversely Influence Patients' Overall Survival
    Terragna, Carolina
    Martello, Marina
    Procacci, Mauro
    Mignone, Flavio
    Pezzi, Annalisa
    Santacroce, Barbara
    Pantani, Lucia
    Saggese, Igor
    Haferlach, Torsten
    Zamagni, Elena
    Borsi, Enrica
    Tacchetti, Paola
    Zannetti, Beatrice A.
    Rocchi, Serena
    Mancuso, Katia
    Dico, Flores A.
    Martinelli, Giovanni
    Cavo, Michele
    BLOOD, 2015, 126 (23)
  • [26] The Revised Myeloma Comorbidity Index (R-MCI) As a Promising Approach for Predicting Overall (OS)- and Progression-Free (PFS) Survival and Optimizing Therapy Strategies in Multiple Myeloma (MM) Patients (pts) Comparative Analysis of 5 Comorbidity Indices (CI), Including Retro- and Prospective Applicability
    Schoeller, Katja
    Ihorst, Gabriele
    Scheubeck, Sophia
    Holler, Max
    Woerner, Sandra M.
    Reinhardt, Heike
    Mueller, Stefan P.
    Duyster, Justus
    Wasch, Ralph
    Engelhardt, Monika
    BLOOD, 2019, 134
  • [27] Survival Prolongation by Rationale INnovative Genomics (SPRING): An international WIN Consortium Phase I/II proof-of-concept study to explore the safety and efficacy of a tri-therapy approach using avelumab, palbociclib and axitinib in advanced/metastatic non-small cell lung cancer (NSCLC) with integrated genomic and transcriptomic correlates
    Solomon, Benjamin
    Felip, Enriqueta
    Bar, Jair
    Berchem, Guy
    Bazhenova, Lyudmila
    Saintigny, Pierre
    Girard, Nicolas
    Sulaiman, Raed
    Bresson, Catherine
    Wunder, Fanny
    Lee, J. Jack
    Raynaud, Jacques
    Rubin, Eitan
    Young, Brandon
    Lazar, Vladimir
    Onn, Amir
    Jones, Brian Leyland
    Kurzrock, Razelle
    CANCER RESEARCH, 2019, 79 (13)