I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms

被引:6
|
作者
Wong, Kin Yau [1 ]
Fan, Cheng [2 ]
Tanioka, Maki [2 ,3 ]
Parker, Joel S. [2 ,3 ]
Nobel, Andrew B. [2 ,4 ,5 ]
Zeng, Donglin [2 ,5 ]
Lin, Dan-Yu [2 ,5 ]
Perou, Charles M. [2 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Cancer genomics; Data integration; Gene modules; Variable selection; BREAST-CANCER; LUNG-CANCER; REGRESSION; MODEL; REGULARIZATION; SELECTION; JOINT; AGE;
D O I
10.1186/s13059-019-1640-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We propose a statistical boosting method, termed I-Boost, to integrate multiple types of high-dimensional genomics data with clinical data for predicting survival time. I-Boost provides substantially higher prediction accuracy than existing methods. By applying I-Boost to The Cancer Genome Atlas, we show that the integration of multiple genomics platforms with clinical variables improves the prediction of survival time over the use of clinical variables alone; gene expression values are typically more prognostic of survival time than other genomics data types; and gene modules/signatures are at least as prognostic as the collection of individual gene expression data.
引用
收藏
页数:15
相关论文
共 27 条
  • [1] I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms
    Kin Yau Wong
    Cheng Fan
    Maki Tanioka
    Joel S. Parker
    Andrew B. Nobel
    Donglin Zeng
    Dan-Yu Lin
    Charles M. Perou
    Genome Biology, 20
  • [2] Integrative analysis based on survival associated co-expression gene modules for predicting Neuroblastoma patients’ survival time
    Yatong Han
    Xiufen Ye
    Jun Cheng
    Siyuan Zhang
    Weixing Feng
    Zhi Han
    Jie Zhang
    Kun Huang
    Biology Direct, 14
  • [3] Integrative analysis based on survival associated co-expression gene modules for predicting Neuroblastoma patients' survival time
    Han, Yatong
    Ye, Xiufen
    Cheng, Jun
    Zhang, Siyuan
    Feng, Weixing
    Han, Zhi
    Zhang, Jie
    Huang, Kun
    BIOLOGY DIRECT, 2019, 14 (1)
  • [4] Predicting survival time for kidney dialysis patients: a data mining approach
    Kusiak, A
    Dixon, B
    Shah, S
    COMPUTERS IN BIOLOGY AND MEDICINE, 2005, 35 (04) : 311 - 327
  • [5] A nearest neighbor approach to predicting survival time with an application in chronic respiratory disease
    Prijs, Maurice
    Peelen, Linda
    Bresser, Paul
    Peek, Niels
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2007, 4594 : 77 - 86
  • [6] Predicting Overall Survival Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive Feature Elimination Technique
    Karami, Golestan
    Orlando, Marco Giuseppe
    Pizzi, Andrea Delli
    Caulo, Massimo
    Del Gratta, Cosimo
    CANCERS, 2021, 13 (19)
  • [7] Deep neural networks integrating genomics and histopathological images for predicting stages and survival time-to-event in colon cancer
    Ogundipe, Olalekan
    Kurt, Zeyneb
    Woo, Wai Lok
    PLOS ONE, 2024, 19 (09):
  • [8] Predicting Remaining Cycle Time from Ongoing Cases: A Survival Analysis-Based Approach
    Baskharon, Fadi
    Awad, Ahmed
    Di Francescomarino, Chiara
    PROCESS MINING WORKSHOPS, ICPM 2020 INTERNATIONAL WORKSHOPS, 2021, 406 : 99 - 111
  • [9] Cogeneration planning under uncertainty Part I: Multiple time frame approach
    Carpaneto, Enrico
    Chicco, Gianfranco
    Mancarella, Pierluigi
    Russo, Angela
    APPLIED ENERGY, 2011, 88 (04) : 1059 - 1067
  • [10] Multiple characterizations of urban air pollution time series using a wavelet - feedforward neural network integrative approach
    Dunea, Daniel
    Iordache, Stefania
    Pohoata, Alin
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 804 - 815