Functional renormalization group computation of interacting fermi systems

被引:0
|
作者
Metzner, W [1 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The functional renormalization group is an ideal tool for dealing with the diversity of energy scales and competition of correlations in interacting Fermi systems. Starting point is an exact hierarchy of flow equations which yields the gradual evolution from a microscopic model Hamiltonian to the effective action as a function of a continuously decreasing energy cutoff. Suitable truncations of the hierarchy have recently led to powerful new approximation schemes. I review applications of the functional renormalization group to the two-dimensional Hubbard model and to one-dimensional Luttinger liquids with impurities.
引用
收藏
页码:58 / 78
页数:21
相关论文
共 50 条
  • [31] Weakly interacting electrons and the renormalization group
    Binz, B
    Baeriswyl, D
    Douçot, B
    ANNALEN DER PHYSIK, 2003, 12 (11-12) : 704 - 736
  • [32] Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems
    Gonzalez-Buxton, C
    Ingersent, K
    PHYSICAL REVIEW B, 1998, 57 (22) : 14254 - 14293
  • [33] The renormalization-group approach for Fermi systems in the presence of singular forward scattering
    Castellani, C
    Caprara, S
    Di Castro, C
    Maccarone, A
    NUCLEAR PHYSICS B, 2001, 594 (03) : 747 - 768
  • [34] Momentum-dependent quasiparticle properties of the Fermi polaron from the functional renormalization group
    von Milczewski, Jonas
    Schmidt, Richard
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [35] Momentum-dependent quasiparticle properties of the Fermi polaron from the functional renormalization group
    Von Milczewski, Jonas
    Schmidt, Richard
    Physical Review A, 110 (03):
  • [36] Renormalization group and the superconducting susceptibility of a Fermi liquid
    Parameswaran, S. A.
    Shankar, R.
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2010, 82 (19)
  • [37] Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response
    Stauber, T.
    Parida, P.
    Trushin, M.
    Ulybyshev, M. V.
    Boyda, D. L.
    Schliemann, J.
    PHYSICAL REVIEW LETTERS, 2017, 118 (26)
  • [38] Renormalization group flow for noncommutative Fermi liquids
    Estrada-Jimenez, Sendic
    Garcia-Compean, Hugo
    Wu, Yong-Shi
    PHYSICAL REVIEW D, 2011, 83 (12):
  • [39] Renormalization group theory for the imbalanced fermi gas
    Gubbels, K. B.
    Stoof, H. T. C.
    PHYSICAL REVIEW LETTERS, 2008, 100 (14)
  • [40] Fermi liquid theory: a renormalization group approach
    N. Dupuis
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 3 : 315 - 331