Functional renormalization group computation of interacting fermi systems

被引:0
|
作者
Metzner, W [1 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The functional renormalization group is an ideal tool for dealing with the diversity of energy scales and competition of correlations in interacting Fermi systems. Starting point is an exact hierarchy of flow equations which yields the gradual evolution from a microscopic model Hamiltonian to the effective action as a function of a continuously decreasing energy cutoff. Suitable truncations of the hierarchy have recently led to powerful new approximation schemes. I review applications of the functional renormalization group to the two-dimensional Hubbard model and to one-dimensional Luttinger liquids with impurities.
引用
收藏
页码:58 / 78
页数:21
相关论文
共 50 条
  • [1] Functional Renormalization Group for Interacting Fermi Systems
    Walter Metzner
    Annales Henri Poincaré, 2003, 4 : 921 - 931
  • [2] Functional renormalization group for interacting Fermi systems
    Metzner, W
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S921 - S931
  • [3] Functional renormalization group approach for inhomogeneous interacting Fermi systems
    Bauer, Florian
    Heyder, Jan
    von Delft, Jan
    PHYSICAL REVIEW B, 2014, 89 (04)
  • [4] Nonequilibrium functional renormalization group for interacting quantum systems
    Jakobs, Severin G.
    Meden, Volker
    Schoeller, Herbert
    PHYSICAL REVIEW LETTERS, 2007, 99 (15)
  • [5] Frequency-dependent functional renormalization group for interacting fermionic systems
    Yirga, Nahom K.
    Campbell, David K.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [6] A functional renormalization group approach to zero-dimensional interacting systems
    Hedden, R
    Meden, V
    Pruschke, T
    Schönhammer, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (29) : 5279 - 5296
  • [7] Fermi-edge singularity and the functional renormalization group
    Kugler, Fabian B.
    von Delft, Jan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (19)
  • [8] NUMERICAL RENORMALIZATION-GROUP FOR FINITE FERMI SYSTEMS
    TOKUYASU, T
    KAMAL, M
    MURTHY, G
    PHYSICAL REVIEW LETTERS, 1993, 71 (25) : 4202 - 4205
  • [9] The density matrix renormalization group for finite Fermi systems
    Dukelsky, J
    Pittel, S
    REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (04) : 513 - 552
  • [10] Renormalization group analysis of weakly interacting van der Waals Fermi system
    Behera, Sushant Kumar
    Ahalawat, Madhavi
    Jana, Subrata
    Samal, Prasanjit
    Deb, Pritam
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (33)