Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps

被引:32
|
作者
Togo, Ren [1 ,5 ]
Hirata, Kenji [2 ]
Manabe, Osamu [2 ]
Ohira, Hiroshi [3 ]
Tsujino, Ichizo [3 ]
Magota, Keiichi [4 ]
Ogawa, Takahiro [1 ]
Haseyama, Miki [1 ]
Shiga, Tohru [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Grad Sch Med, Dept Nucl Med, Sapporo, Hokkaido 0608638, Japan
[3] Hokkaido Univ Hosp, Dept Med 1, Sapporo, Hokkaido 0608638, Japan
[4] Hokkaido Univ Hosp, Div Med Imaging & Technol, Sapporo, Hokkaido 0608638, Japan
[5] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, N-14,W-9, Sapporo, Hokkaido 0600814, Japan
基金
日本科学技术振兴机构;
关键词
Deep learning; Convolutional neural network (CNN); Cardiac sarcoidosis (CS); F-18-FDG PET; Computer-aided diagnosis; Radiology; Machine learning; Feature extraction; Feature selection; F-18-FDG PET; AGREEMENT; DIAGNOSIS; DISEASE;
D O I
10.1016/j.compbiomed.2018.11.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aims: The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. Methods: A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods. Results: Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively. Conclusion: The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [21] A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine
    Sabanci, Kadir
    Aslan, Muhammet Fatih
    Ropelewska, Ewa
    Unlersen, Muhammed Fahri
    JOURNAL OF FOOD PROCESS ENGINEERING, 2022, 45 (06)
  • [22] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [23] Gemstone Classification Using Deep Convolutional Neural Network
    Chakraborty B.
    Mukherjee R.
    Das S.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 773 - 785
  • [24] Deep Convolutional Neural Network-Based Detector for Index Modulation
    Wang, Tengjiao
    Yang, Fang
    Song, Jian
    Han, Zhu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (10) : 1705 - 1709
  • [25] Deep Convolutional Neural Network-Based Approaches for Face Recognition
    Almabdy, Soad
    Elrefaei, Lamiaa
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [26] Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images
    Xie, Xiaofeng
    Fu, Chi-Cheng
    Lv, Lei
    Ye, Qiuyi
    Yu, Yue
    Fang, Qu
    Zhang, Liping
    Hou, Likun
    Wu, Chunyan
    MODERN PATHOLOGY, 2022, 35 (05) : 609 - 614
  • [27] Optimization-enabled deep convolutional neural network with multiple features for cardiac arrhythmia classification using ECG signals
    Soman, Anila
    Sarath, R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [28] Deep convolutional neural network-based Leveraging Lion Swarm Optimizer for gesture recognition and classification
    Maashi, Mashael
    Al-Hagery, Mohammed Abdullah
    Rizwanullah, Mohammed
    Osman, Azza Elneil
    AIMS MATHEMATICS, 2024, 9 (04): : 9380 - 9393
  • [29] A deep convolutional neural network-based pigmented skin lesion classification application and experts evaluation
    Sevli, Onur
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18): : 12039 - 12050
  • [30] A deep convolutional neural network-based pigmented skin lesion classification application and experts evaluation
    Onur Sevli
    Neural Computing and Applications, 2021, 33 : 12039 - 12050