On operator interpolation problems

被引:0
|
作者
Jo, YS [1 ]
Kang, JH
Kim, KS
机构
[1] Keimyung Univ, Dept Math, Taegu 704701, South Korea
[2] Daegu Univ, Dept Math, Taegu 712714, South Korea
关键词
interpolation problem; subspace lattice; AlgL; CSL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtained the following : Let H be a Hilbert space and L be a subspace lattice on H. Let X and Y be operators acting on X If the range of X is dense in H, then the following are equivalent: (1) there exists an operator A in AlgL such that AX = Y, (2) sup {parallel toE(perpendicular to)Yfparallel to/parallel toE(perpendicular to)Xfparallel to : f is an element of H, E is an element of L } = K < infinity. Moreover, if condition (2) holds, we may choose the operator A such that parallel toAparallel to = K.
引用
收藏
页码:423 / 433
页数:11
相关论文
共 50 条
  • [31] Discrete time-variant interpolation as classical interpolation with an operator argument
    C. Foias
    A. E. Frazho
    I. Gohberg
    M. A. Kaashoek
    Integral Equations and Operator Theory, 1997, 28 : 500 - 500
  • [32] Discrete time-variant interpolation as classical interpolation with an operator argument
    Foias, C
    Frazho, AE
    Gohberg, I
    Kaashoek, MA
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (04) : 371 - 403
  • [33] RELATED INTERPOLATION PROBLEMS
    READ, GA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (06): : 353 - &
  • [34] A CLASS OF INTERPOLATION PROBLEMS
    KOROBEINIK, YF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1987, (04): : 36 - 44
  • [35] ON A CLASS OF INTERPOLATION PROBLEMS
    KAZMIN, YA
    DOKLADY AKADEMII NAUK SSSR, 1967, 173 (04): : 762 - &
  • [36] Two problems on interpolation
    Levin, E
    Shekhtman, B
    CONSTRUCTIVE APPROXIMATION, 1995, 11 (04) : 513 - 515
  • [37] INTERPOLATION AND IDENTIFICATION PROBLEMS
    Khlobystov, V. V.
    Popoyicheya, T. N.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2006, 42 (03) : 392 - 397
  • [38] ABSTRACT INTERPOLATION AND OPERATOR-VALUED KERNELS
    FOURNIER, JJF
    RUSSO, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (OCT): : 283 - 289
  • [39] Craig interpolation property for operator logics of proofs
    Sidon, TL
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (02): : 34 - 38
  • [40] Interpolation theory and measures related to operator ideals
    Cobos, F
    Manzano, A
    Martínez, A
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200): : 401 - 416