Gene expression data clustering based on local similarity combination

被引:0
|
作者
Pan, D [1 ]
Wang, F [1 ]
机构
[1] Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China
来源
PROCEEDINGS OF THE 4TH ASIA-PACIFIC BIOINFORMATICS CONFERENCE | 2006年 / 3卷
关键词
D O I
10.1142/9781860947292_0038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Clustering is widely used in gene expression analysis, which helps to group genes with similar biological function together. The traditional clustering techniques are not suitable to be directly applied to gene expression time series data, because of the inhered properties of local regulation and time shift. In order to cope with the existing problems, the local similarity and time shift, we have developed a new similarity measurement technique called Local Similarity Combination in this paper. And at last, we'll run our method on the real gene expression data and show that it works well.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [31] Markov chain correlation based clustering of gene expression data
    Deng, YP
    Chokalingam, V
    Zhang, CY
    ITCC 2005: International Conference on Information Technology: Coding and Computing, Vol 2, 2005, : 750 - 755
  • [32] Study on Ensemble based Clustering Algorithm for Gene Expression Data
    Chu, Zhenfang
    Cao, Buyang
    Yu, Fang
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [33] Clustering gene expression data for periodic genes based on INMF
    Rao, Nini
    Shepherd, Simon J.
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 412 - 423
  • [34] Ensemble classification for gene expression data based on parallel clustering
    Meng, Jun
    Jiang, Dingling
    Zhang, Jing
    Luan, Yushi
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 20 (03) : 213 - 229
  • [35] Efficient Two Dimensional Clustering of Microarray Gene Expression Data By Means Of Hybrid Similarity Measure
    Priscilla, R.
    Swamynathan, S.
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI'12), 2012, : 1047 - 1053
  • [36] A kernel-based clustering method for gene selection with gene expression data
    Chen, Huihui
    Zhang, Yusen
    Gutman, Ivan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 62 : 12 - 20
  • [37] Threshold Based Similarity Clustering of Medical Data
    Morajkar, Sweta C.
    Laxminarayani, J. A.
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 591 - 595
  • [38] Hierarchical clustering of gene expression data
    Luo, F
    Tang, K
    Khan, L
    THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 328 - 335
  • [39] Fuzzy clustering of gene expression data
    Futschik, ME
    Kasabov, NK
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 414 - 419
  • [40] An Incremental Clustering of Gene Expression data
    Das, Rosy
    Bhattacharyya, Dhruba K.
    Kalita, Jugal K.
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 741 - +