Data-Driven Diagnosis of Nonlinearly Mixed Mechanical Faults in Wind Turbine Gearbox

被引:24
|
作者
Yang, Qiang [1 ]
Hu, Chunzhi [1 ]
Zheng, Nenggan [2 ]
机构
[1] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Qiushi Acad Adv Studies, Hangzhou 310027, Zhejiang, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2018年 / 5卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1109/JIOT.2017.2761891
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter proposes an efficient algorithmic solution to diagnose multiple mechanical faults in wind turbine gearbox through source number estimation using an empirical mode decomposition (EMD) and singular value decomposition (SVD) joint approach, and source signal recovery based on short-time Fourier transform (STFT), fuzzy C-means clustering and l(1) norm decomposition. The effectiveness of the solution is validated using real wind turbine measurements under multifault scenarios.
引用
收藏
页码:466 / 467
页数:2
相关论文
共 50 条
  • [31] The prediction and diagnosis of wind turbine faults
    Kusiak, Andrew
    Li, Wenyan
    RENEWABLE ENERGY, 2011, 36 (01) : 16 - 23
  • [32] Overview of Data-Driven Models for Wind Turbine Wake Flows
    Ye, Maokun
    Li, Min
    Liu, Mingqiu
    Xiao, Chengjiang
    Wan, Decheng
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2025, : 1 - 20
  • [33] Data-Driven Wind Turbine Power Generation Performance Monitoring
    Long, Huan
    Wang, Long
    Zhang, Zijun
    Song, Zhe
    Xu, Jia
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (10) : 6627 - 6635
  • [34] Control of wind turbine power and vibration with a data-driven approach
    Kusiak, Andrew
    Zhang, Zijun
    RENEWABLE ENERGY, 2012, 43 : 73 - 82
  • [35] Data-driven modeling of the wake behind a wind turbine array
    Ali, Naseem
    Cal, Raul Bayoan
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (03)
  • [36] Data-driven Sensor Fault Estimation for the Wind Turbine Systems
    Rahimilarki, Reihane
    Gao, Zhiwei
    Jin, Nanlin
    Binns, Richard
    Zhang, Aihua
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 1211 - 1216
  • [37] Data-driven root cause diagnosis of faults in process industries
    Li, Gang
    Qin, S. Joe
    Yuan, Tao
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 159 : 1 - 11
  • [38] Data-driven adaptive optimization of wind turbine yaw parameters
    Liu Y.
    Chen L.
    Wang X.
    Xie H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (08): : 366 - 372
  • [39] Data-Driven Approaches for Diagnosis of Incipient Faults in DC Motors
    Munikoti, Sai
    Das, Laya
    Natarajan, Balasubramaniam
    Srinivasan, Babji
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (09) : 5299 - 5308
  • [40] A Data-Driven Approach for Monitoring Blade Pitch Faults in Wind Turbines
    Kusiak, Andrew
    Verma, Anoop
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2011, 2 (01) : 87 - 96