Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis

被引:27
|
作者
Chowdhurya, Raja [1 ]
Freire, Fausto [2 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Roorkee 247667, Uttarakhand, India
[2] Univ Coimbra, Dept Mech Engn, ADAI IAETA, P-3030788 Coimbra, Portugal
关键词
Dairy manure; Algal bioenergy; Life cycle assessment (LCA); Energy demand; Greenhouse gas (GHG); ANAEROBIC CO-DIGESTION; MUNICIPAL SOLID-WASTE; BIODIESEL PRODUCTION; SEWAGE-SLUDGE; ENVIRONMENTAL IMPACTS; AGRICULTURAL LAND; BIOGAS PRODUCTION; FAST PYROLYSIS; CATTLE MANURE; MICROALGAE;
D O I
10.1016/j.apenergy.2015.05.045
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study estimated the potential of algal bioenergy production using nitrogen and phosphorus present in the dairy manure (produced in the US). State wise dairy manure production and energy mixes were used to estimate algal bioenergy production and associated life cycle nonrenewable primary energy demand and greenhouse gas emissions for the four scenarios. These scenarios were constructed using various combination of following processes (i) anaerobic digestion, (ii) algal biodiesel production using effluent from (i), (iii) pyrolysis, and (iv) enzymatic hydrolysis. Bioenergy production, nonrenewable primary energy demand and greenhouse gas emissions of each state were aggregated to estimate the total bioenergy production, nonrenewable primary energy requirement and greenhouse gas emissions for the US. Two different cases were simulated for each scenario, one without taking into account the nutrient values (N, P) of applied sludge generated from the bioenergy production (Case B) while in the other one, nutrient values of sludge were considered (Case A). For incorporation of nutrient values of sludge, system expansion approach was used. It was estimated that by using dairy manure, 0.56 billion GJ/yr bioenergy could be produced. Minimum "nonrenewable primary energy requirement (NRPER)" (GJ/GJ) [Total primary nonrenewable energy requirement/bioenergy produced] and GHG emissions (kg CO2 eq./GJ bioenergy produced) for the four scenarios (1-4) for case B were as follows (1) 0.37, 27 (2) 0.51, -30; (3) 0.55, 47 and (4) 0.70, 15 respectively. In case A, NRPER did not change as compared to case B. GHG emissions increased in case A scenarios as compared to case B scenarios. The increase in GHG emission was mostly due to incorporation of reference scenario (raw dairy manure was applied on the ground) and N2O emission from the sludge amended soil. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1112 / 1121
页数:10
相关论文
共 50 条
  • [41] Considering Battery Degradation in Life Cycle Greenhouse Gas Emission Analysis of Electric Vehicles
    Yang, Fan
    Xie, Yuanyuan
    Deng, Yelin
    Yuan, Chris
    25TH CIRP LIFE CYCLE ENGINEERING (LCE) CONFERENCE, 2018, 69 : 505 - 510
  • [42] Life cycle analysis of energy consumption and greenhouse gas emissions for wood pellet
    Liu, Huacai
    Yin, Xiuli
    Wu, Chuangzhi
    Liang, Wei
    Xu, Jinhua
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2013, 34 (04): : 709 - 713
  • [43] Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems
    Peng, Jinqing
    Lu, Lin
    Yang, Hongxing
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 19 : 255 - 274
  • [44] Life-Cycle Energy and Greenhouse Gas Emission Benefits of Lightweighting in Automobiles: Review and Harmonization
    Kim, Hyung Chul
    Wallington, Timothy J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (12) : 6089 - 6097
  • [45] Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States
    Hao Cai
    Jennifer B Dunn
    Zhichao Wang
    Jeongwoo Han
    Michael Q Wang
    Biotechnology for Biofuels, 6
  • [46] Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States
    Cai, Hao
    Dunn, Jennifer B.
    Wang, Zhichao
    Han, Jeongwoo
    Wang, Michael Q.
    BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [47] The life cycle greenhouse gas emission benefits from alternative uses of biofuel coproducts
    Mahbub, Nafisa
    Gemechu, Eskinder
    Zhang, Hao
    Kumar, Amit
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2019, 34 : 173 - 186
  • [48] Life cycle assessment of nutrient remediation and bioenergy production potential from the harvest of hydrilla (Hydrilla verticillata)
    Evans, Jason M.
    Wilkie, Ann C.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2010, 91 (12) : 2626 - 2631
  • [49] Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources
    Hardisty, Paul E.
    Clark, Tom S.
    Hynes, Robert G.
    ENERGIES, 2012, 5 (04) : 872 - 897
  • [50] Life cycle analysis of greenhouse gas emissions from organic and conventional food production systems, with and without bio-energy options
    Cooper, J. M.
    Butler, G.
    Leifert, C.
    NJAS-WAGENINGEN JOURNAL OF LIFE SCIENCES, 2011, 58 (3-4) : 185 - 192