Shape and Size Control of LiFePO4 for High-Performance Lithium-Ion Batteries

被引:37
|
作者
Liang, Yachun [1 ]
Wen, Kechun [1 ,2 ]
Mao, Yiwu [3 ]
Liu, Zhongping [4 ]
Zhu, Gaolong [5 ]
Yang, Fei [1 ]
He, Weidong [1 ,5 ,6 ]
机构
[1] Univ Elect Sci & Technol, Sch Energy Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol, Sch Life Sci & Technol, Chengdu 611731, Peoples R China
[3] China Acad Engn Phys, Inst Chem Mat, Mianyang 621900, Peoples R China
[4] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China
[5] Vanderbilt Univ, Interdisciplinary Program Mat Sci, Nashville, TN 37234 USA
[6] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37234 USA
来源
CHEMELECTROCHEM | 2015年 / 2卷 / 09期
关键词
cathode materials; lithium; morphology; size distribution; synthetic methods; POSITIVE-ELECTRODE MATERIALS; CATHODE MATERIAL; LI-ION; ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; IRON PHOSPHATE; PARTICLE-SIZE; SOLVOTHERMAL SYNTHESIS; CRYSTAL ORIENTATION; SYNTHESIZED LIFEPO4;
D O I
10.1002/celc.201500114
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Olivine-type LiFePO4, which is an extensively employed cathode material in lithium-ion batteries, has attracted much attention due to its abundance, low cost, low toxicity, and high thermal stability. However, low electronic conductivity and sluggish lithium-ion diffusion in LiFePO4 result in poor rate capability, which seriously limits its applications in next-generation green and sustainable power systems. Extensive efforts have focused on exploring efficient synthetic approaches to optimize its performance by controlling the particle size and shape. In this Review, we first summarize the typical synthetic methods for LiFePO4 and follow with a discussion of the correlation between LiFePO4 crystal size/morphology and the associated electrochemical performance. Our overview seeks to provide insightful guidance for the design of high-performance lithium-ion batteries with highly efficient and cost-effective LiFePO4 cathode materials.
引用
收藏
页码:1227 / 1237
页数:11
相关论文
共 50 条
  • [41] A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries
    Ha, Jeonghyun
    Park, Seung-Keun
    Yu, Seung-Ho
    Jin, Aihua
    Jang, Byungchul
    Bong, Sungyool
    Kim, In
    Sung, Yung-Eun
    Piao, Yuanzhe
    NANOSCALE, 2013, 5 (18) : 8647 - 8655
  • [42] A carbon-LiFePO4 nanocomposite as high-performance cathode material for lithium-ion batteries
    Ren, Jianguo
    Pu, Weihua
    He, Xiangming
    Jiang, Changyin
    Wan, Chunrong
    IONICS, 2011, 17 (07) : 581 - 586
  • [43] Direct synthesis of a lithium carboxymethyl cellulose binder using wood dissolving pulp for high-performance LiFePO4 cathodes in lithium-ion batteries
    Li, Jingxin
    Wang, Ailin
    Xiang, Weihao
    Liu, Shiwei
    Li, Lu
    Wu, Qiong
    Liu, Yue
    Liu, Yuxiang
    Nie, Genkuo
    Nie, Shuangxi
    Yao, Shuangquan
    Yu, Hailong
    BIORESOURCE TECHNOLOGY, 2024, 401
  • [44] Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4
    Pier Paolo Prosini
    Cinzia Cento
    Alfonso Pozio
    Journal of Solid State Electrochemistry, 2014, 18 : 795 - 804
  • [45] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [46] Zwitterionic polymer as binder for LiFePO4 cathodes in lithium-ion batteries
    Yang, Meng
    Rong, Zhuolin
    Li, Xuewei
    Yuan, Bing
    Zhang, Wangqing
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [47] Synthesis of LiFePO4/C composite cathode for lithium-ion batteries
    Cech, O.
    Thomas, J. E.
    Moreno, M. S.
    Visintin, A.
    Sedlarikova, M.
    Vondrak, J.
    ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 11), 2011, 32 (01): : 23 - 31
  • [48] Development and challenges of LiFePO4 cathode material for lithium-ion batteries
    Yuan, Li-Xia
    Wang, Zhao-Hui
    Zhang, Wu-Xing
    Hu, Xian-Luo
    Chen, Ji-Tao
    Huang, Yun-Hui
    Goodenough, John B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 269 - 284
  • [49] Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4
    Prosini, Pier Paolo
    Cento, Cinzia
    Pozio, Alfonso
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (03) : 795 - 804
  • [50] Recent development of LiFePO4 cathode materials for lithium-ion batteries
    Zhao, Xinbing
    Xie, Jian
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2007, 43 (01): : 69 - 76