Transformed Normal Probability Density Functions for Parameter Estimation

被引:0
|
作者
Soijer, Marco W. [1 ]
机构
[1] EADS Def & Secur, D-85077 Manching, Germany
来源
JOURNAL OF AIRCRAFT | 2008年 / 45卷 / 06期
关键词
D O I
10.2514/1.39299
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The transformation of a normal density function into probability density function for parameter estimation, is presented. Parameter-estimation, for determination of the aircraft performance and control, depends on the probability density function, which can provide accurate information about model uncertainties and measurement errors. The probability density function is derived from a normal density function by adjusting the order of the exponentiation, separating the function in left- and right-hand tolerance sides, and correcting the scale factor. It was observed that the transformed probability density function can provide two additional degrees of freedom with respect to the Gaussian probability density function. The transformed probability density function can be used for modeling the boundary conditions for parameter estimation.
引用
收藏
页码:2173 / 2175
页数:3
相关论文
共 50 条
  • [21] Nonparametric estimation of probability density functions of random persistence diagrams
    Maroulas, Vasileios
    Mike, Joshua L.
    Oballe, Christopher
    Journal of Machine Learning Research, 2019, 20
  • [22] A multirate DSP model for estimation of discrete probability density functions
    Yoon, BJ
    Vaidyanathan, PP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (01) : 252 - 264
  • [23] PROBABILITY DENSITY-ESTIMATION USING ELLIPTIC BASIS FUNCTIONS
    JOHNSTON, LPM
    KRAMER, MA
    AICHE JOURNAL, 1994, 40 (10) : 1639 - 1649
  • [24] Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams
    Maroulas, Vasileios
    Mike, Joshua L.
    Oballe, Christopher
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [25] Bayesian point estimation and predictive density estimation for the binomial distribution with a restricted probability parameter
    Hamura, Yasuyuki
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (11) : 3767 - 3794
  • [26] Probability hypothesis density filter for parameter estimation of multiple hazardous sources
    Daniyan, Abdullahi
    Liu, Cunjia
    Chen, Wen-Hua
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [27] Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants
    Lee, Jong Kyeom
    Kim, Tae Yun
    Kim, Hyun Su
    Chai, Jang-Bom
    Lee, Jin Woo
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2016, 48 (05) : 1280 - 1290
  • [28] Root-Transformed Local Linear Regression for Solar Irradiance Probability Density Estimation
    Wahbah, Maisam
    Feng, Samuel
    EL-Fouly, Tarek H. M.
    Zahawi, Bashar
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 652 - 661
  • [29] Consistent modeling of scalar mixing for presumed, multiple parameter probability density functions
    Mortensen, M
    PHYSICS OF FLUIDS, 2005, 17 (01) : 018106 - 018106
  • [30] Simultaneous Estimation of Filtered and Smoothed State Probability Density Functions by Multiple Distribution Estimation
    Murata, Masaya
    Kawano, Isao
    Inoue, Koichi
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 729 - 734