Take a non CM p-slope 0 analytic family of Hilbert modular forms of level np(infinity) for a prime p of the base totally real field F. We prove that the Hecke field over Q[u(p)infinity] of members of the family grows indefinitely large over any infinite set of arithmetic points with fixed weight. The condition: p > 2 made in [H11] for F = Q is also eliminated in this paper for the assertion.
机构:
Univ Caen Normandie, Normandie Univ, CNRS, UMR 6139,Lab Math Nicolas Oresme LMNO, F-14000 Caen, FranceUniv Caen Normandie, Normandie Univ, CNRS, UMR 6139,Lab Math Nicolas Oresme LMNO, F-14000 Caen, France
Pati, Maria Rosaria
Ponsinet, Gautier
论文数: 0引用数: 0
h-index: 0
机构:
Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, GermanyUniv Caen Normandie, Normandie Univ, CNRS, UMR 6139,Lab Math Nicolas Oresme LMNO, F-14000 Caen, France
Ponsinet, Gautier
Vigni, Stefano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, ItalyUniv Caen Normandie, Normandie Univ, CNRS, UMR 6139,Lab Math Nicolas Oresme LMNO, F-14000 Caen, France