Twin Bounded Weighted Relaxed Support Vector Machines

被引:11
|
作者
Alamdar, Fatemeh [1 ]
Mohammadi, Fatemeh Sheykh [1 ]
Amiri, Ali [1 ]
机构
[1] Univ Zanjan, Dept Comp Engn, Zanjan 4537138791, Iran
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Twin support vector machines; weighted support vector machine; relaxed support vector machine; imbalanced data classification; fast classification; outliers; IMBALANCED DATA; CLASSIFICATION; NOISE; PREDICTION; DATASETS; SVM;
D O I
10.1109/ACCESS.2019.2897891
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data distribution has an important role in classification. The problem of imbalanced data has occurred when the distribution of one class, which usually attends more interest, is negligible compared with other class. Furthermore, by the existence of outliers and noise, the classification of these data confronts more challenges. Despite these challenges, doing fast classification with good performance is desired. One of the successful classifier methods for dealing with imbalanced data and outliers is weighted relaxed support vector machines (WRSVMs). In this paper, the improved twin version of this classifier, which is called twin-bounded weighted relaxed support vector machines, is introduced to confront the mentioned challenges; besides, it performs in a significant fast manner and it is more accurate in most cases. This method benefits from the fast classification manner of twin-bounded support vector machines and outlier robustness capability of WRSVM in the imbalanced problems. The experimentally, the proposed method is compared with the WRSVM and other standard SVM-based methods on the public benchmark datasets. The results confirm the efficiency of the proposed method.
引用
收藏
页码:22260 / 22275
页数:16
相关论文
共 50 条
  • [21] Density Weighted Twin Support Vector Machines for Binary Class Imbalance Learning
    Barenya Bikash Hazarika
    Deepak Gupta
    Neural Processing Letters, 2022, 54 : 1091 - 1130
  • [22] An overview on twin support vector machines
    Shifei Ding
    Junzhao Yu
    Bingjuan Qi
    Huajuan Huang
    Artificial Intelligence Review, 2014, 42 : 245 - 252
  • [23] Review on: Twin Support Vector Machines
    Tian Y.
    Qi Z.
    Tian, Yingjie (tyj@ucas.ac.cn), 1600, Springer Science and Business Media Deutschland GmbH (01): : 253 - 277
  • [24] Twin support vector machines: A survey
    Huang, Huajuan
    Wei, Xiuxi
    Zhou, Yongquan
    NEUROCOMPUTING, 2018, 300 : 34 - 43
  • [25] Generalized Twin Support Vector Machines
    H. Moosaei
    S. Ketabchi
    M. Razzaghi
    M. Tanveer
    Neural Processing Letters, 2021, 53 : 1545 - 1564
  • [26] Improvements on Twin Support Vector Machines
    Shao, Yuan-Hai
    Zhang, Chun-Hua
    Wang, Xiao-Bo
    Deng, Nai-Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 962 - 968
  • [27] Multitask Twin Support Vector Machines
    Xie, Xijiong
    Sun, Shiliang
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 341 - 348
  • [28] Generalized Twin Support Vector Machines
    Moosaei, H.
    Ketabchi, S.
    Razzaghi, M.
    Tanveer, M.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1545 - 1564
  • [29] An overview on twin support vector machines
    Ding, Shifei
    Yu, Junzhao
    Qi, Bingjuan
    Huang, Huajuan
    ARTIFICIAL INTELLIGENCE REVIEW, 2014, 42 (02) : 245 - 252
  • [30] A weighted twin support vector regression
    Xu, Yitian
    Wang, Laisheng
    KNOWLEDGE-BASED SYSTEMS, 2012, 33 : 92 - 101