The Hausdorff-Ershov hierarchy in Euclidean spaces

被引:9
|
作者
Hemmerling, A [1 ]
机构
[1] Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
关键词
computable analysis; effective descriptive set theory; Hausdorff's difference hierarchy; Ershov's hierarchy; topological arithmetical hierarchy; resolvable sets; global and local depth of sets; recursivity in analysis; approximate decidability;
D O I
10.1007/s00153-005-0317-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The topological arithmetical hierarchy is the effective version of the Borel hierarchy. Its class Delta(ta)(2) is just large enough to include several types of pointsets in Euclidean spaces R-k which are fundamental in computable analysis. As a crossbreed of Hausdorff's difference hierarchy in the Borel class Delta(B)(2) and Ershov's hierarchy in the class Delta(0)(2) of the arithmetical hierarchy, the Hausdorff-Ershov hierarchy introduced in this paper gives a powerful classification within Delta(ta)(2). This is based on suitable characterizations of the sets from Delta(ta)(2) which are obtained in a close analogy to those of the Delta(B)(2) sets as well as those of the Delta(0)(2) sets. A helpful tool in dealing with resolvable sets is contributed by the technique of depth analysis. On this basis, the hierarchy properties, in particular the strict inclusions between classes of different levels, can be shown by direct constructions of witness sets. The Hausdorff-Ershov hierarchy runs properly over all constructive ordinals, in contrast to Ershov's hierarchy whose denotation-independent version collapses at level omega(2). Also, some new characterizations of concepts of decidability for pointsets in Euclidean spaces are presented.
引用
收藏
页码:323 / 350
页数:28
相关论文
共 50 条
  • [11] ON UNIVERSAL PAIRS IN THE ERSHOV HIERARCHY
    Bazhenov, N. A.
    Mustafa, M.
    Ospichev, S. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 23 - 31
  • [12] CEA Operators and the Ershov Hierarchy
    M. M. Arslanov
    I. I. Batyrshin
    M. M. Yamaleev
    Russian Mathematics, 2021, 65 : 63 - 69
  • [13] On Universal Pairs in the Ershov Hierarchy
    N. A. Bazhenov
    M. Mustafa
    S. S. Ospichev
    Siberian Mathematical Journal, 2021, 62 : 23 - 31
  • [14] Normalizing notations in the Ershov hierarchy
    Peng, Cheng
    MATHEMATICAL LOGIC QUARTERLY, 2021, 67 (04) : 506 - 513
  • [15] Friedberg numberings in the Ershov hierarchy
    Badaev, Serikzhan A.
    Manat, Mustafa
    Sorbi, Andrea
    ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (1-2) : 59 - 73
  • [16] Friedberg numberings in the Ershov hierarchy
    Serikzhan A. Badaev
    Mustafa Manat
    Andrea Sorbi
    Archive for Mathematical Logic, 2015, 54 : 59 - 73
  • [17] Turing jumps in the Ershov hierarchy
    M. Kh. Faizrakhmanov
    Algebra and Logic, 2011, 50 : 279 - 289
  • [18] Asymptotic density and the Ershov hierarchy
    Downey, Rod
    Jockusch, Carl
    McNicholl, Timothy H.
    Schupp, Paul
    MATHEMATICAL LOGIC QUARTERLY, 2015, 61 (03) : 189 - 195
  • [19] TURING JUMPS IN THE ERSHOV HIERARCHY
    Faizrakhmanov, M. Kh.
    ALGEBRA AND LOGIC, 2011, 50 (03) : 279 - 289
  • [20] TURING DEGREES AND THE ERSHOV HIERARCHY
    Stephan, Frank
    Yang, Yue
    Yu, Liang
    PROCEEDINGS OF THE 10TH ASIAN LOGIC CONFERENCE, 2010, : 300 - +