Fractional backward Kolmogorov equations

被引:6
|
作者
Zhang Hong [1 ]
Li Guo-Hua [1 ]
Luo Mao-Kang [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
anomalous diffusive; fractional backward Kolmogorov equations; subordinated process;
D O I
10.1088/1674-1056/21/6/060201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X (S-alpha(t)), the subordinator S-alpha(t) is termed as the inverse-time alpha-stable subordinator and the process X (tau) satisfies the corresponding time homogeneous Ito stochastic differential equation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] The backward problem for time-fractional evolution equations
    Chorfi, S. E.
    Maniar, L.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2024, 103 (12) : 2194 - 2212
  • [22] On a backward problem for nonlinear time fractional wave equations
    He, Jia Wei
    Zhou, Yong
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1589 - 1612
  • [23] On nonlocal backward problems for fractional stochastic diffusion equations
    Peng, Li
    Huang, Yunqing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1450 - 1462
  • [24] Regularization of a backward problem for composite fractional relaxation equations
    Wu, Yao-Qun
    He, Jia Wei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 180 - 196
  • [25] FRACTIONAL FOKKER-PLANCK-KOLMOGOROV TYPE EQUATIONS AND THEIR ASSOCIATED STOCHASTIC DIFFERENTIAL EQUATIONS
    Hahn, Marjorie
    Umarov, Sabir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) : 56 - 79
  • [26] Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations
    Marjorie Hahn
    Sabir Umarov
    Fractional Calculus and Applied Analysis, 2011, 14 : 56 - 79
  • [27] BACKWARD UNIQUENESS OF KOLMOGOROV OPERATORS
    Wang, Wendong
    Zhang, Liqun
    METHODS AND APPLICATIONS OF ANALYSIS, 2013, 20 (01) : 79 - 88
  • [28] Symmetries of Kolmogorov Backward Equation
    Kozlov, Roman
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2021, 28 (02) : 182 - 193
  • [29] On backward problems for stochastic fractional reaction equations with standard and fractional Brownian motion
    Tuan, Nguyen Huy
    Foondun, Mohammud
    Thach, Tran Ngoc
    Wang, Renhai
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [30] Symmetries of Kolmogorov Backward Equation
    Roman Kozlov
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 182 - 193