Stability and superstability of generalized quadratic ternary derivations on non-Archimedean ternary Banach algebras: a fixed point approach

被引:3
|
作者
Park, Choonkil [1 ]
Gordji, Madjid Eshaghi [2 ]
Cho, Yeol Je [3 ,4 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[2] Semnan Univ, Dept Math, Semnan, Iran
[3] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[4] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
Quadratic functional equation; quadratic derivation; superstability; non Archimedean algebra; fixed point; FUNCTIONAL-EQUATION; HOMOMORPHISMS;
D O I
10.1186/1687-1812-2012-97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using fixed point method, we prove the Hyers-Ulam stability and the superstability of generalized quadratic ternary derivations on non-Archimedean ternary Banach algebras. Indeed, we investigate the Hyers-Ulam stability and the superstability of the system of functional equations {f([abc]) = [f(a)b(2)c(2)] + [a(2)f(b)c(2)] + [a(2)b(2)f(c)]; g([abc]) = [g(a)b(2)c(2)] + [a(2)f(b)c(2)] + [a(2)b(2)f(c)]; g(ux + vy) + g(ux - vy) = 2u(2)g(x) + 2v(2)g(y); in non-Archimedean ternary Banach algebras.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条