Semi-empirical neural network modeling of metal-organic chemical vapor deposition

被引:17
|
作者
Nami, Z
Misman, O
Erbil, A
May, GS
机构
[1] GEORGIA INST TECHNOL,SCH PHYS,ATLANTA,GA 30332
[2] GEORGIA INST TECHNOL,SCH ELECT & COMP ENGN,ATLANTA,GA 30332
基金
美国国家航空航天局;
关键词
D O I
10.1109/66.572084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal-organic chemical vapor deposition (MOCVD) is an important technique for growing thin films with various applications in electronics and optics, The development of accurate and efficient MOCVD process models is therefore desirable, since such models can be instrumental in improving process control in a manufacturing environment, This paper presents a semi-empirical MOCVD model based on ''hybrid'' neural networks, The model is constructed by characterizing the MOCVD of titanium dioxide (TiO2) films through the measurement of deposition rate over a range of deposition conditions by a statistically designed experiment in which susceptor and source temperature, flow rate of the carrier gas for the precursor and chamber pressure are varied, A modified backpropagation neural network is then trained on the experimental data to determine the value of the adjustable parameters in an analytical expression for the TiO2 deposition rate, In so doing, a general purpose methodology for deriving semi-empirical neural process models which take into account prior knowledge of the underlying process physics is developed.
引用
收藏
页码:288 / 294
页数:7
相关论文
共 50 条
  • [31] The influence of As and Ga prelayers on the metal-organic chemical vapor deposition of GaAs/Ge
    R. Tyagi
    M. Singh
    M. Thirumavalavan
    T. Srinivasan
    S. K. Agarwal
    Journal of Electronic Materials, 2002, 31 : 234 - 237
  • [32] Optimization of Metal-Organic Chemical Vapor Deposition Regrown n-GaN
    Leone, Stefano
    Brueckner, Peter
    Kirste, Lutz
    Doering, Philipp
    Fuchs, Theodor
    Mueller, Stefan
    Prescher, Mario
    Quay, Ruediger
    Ambacher, Oliver
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (03):
  • [33] Stability of metal-organic frameworks for high pressure confined chemical vapor deposition
    Laubacker, Briana
    Badding, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [34] A Systematic Study on the Growth of GaAs Nanowires by Metal-Organic Chemical Vapor Deposition
    Soci, Cesare
    Bao, Xin-Yu
    Aplin, David P. R.
    Wang, Deli
    NANO LETTERS, 2008, 8 (12) : 4275 - 4282
  • [35] Optimization study of metal-organic chemical vapor deposition of ZnO on sapphire substrate
    Zhu, Guangyao
    Gu, Shulin
    Zhu, Shunming
    Huang, Shimin
    Gu, Ran
    Ye, Jiandong
    Zheng, Youdou
    JOURNAL OF CRYSTAL GROWTH, 2012, 349 (01) : 6 - 11
  • [36] Effects of temperature on ZnO hybrids grown by metal-organic chemical vapor deposition
    Kim, A-Young
    Fang, Samseok
    Lee, Do Han
    Yim, So Young
    Byun, Dongjin
    MATERIALS RESEARCH BULLETIN, 2012, 47 (10) : 2888 - 2890
  • [37] A THERMOANALYTICAL SURVEY OF PRECURSORS FOR COPPER METAL-ORGANIC CHEMICAL VAPOR-DEPOSITION
    GROSS, ME
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) : 2422 - 2426
  • [38] Observation of growth modes during metal-organic chemical vapor deposition of GaN
    Stephenson, GB
    Eastman, JA
    Thompson, C
    Auciello, O
    Thompson, LJ
    Munkholm, A
    Fini, P
    DenBaars, SP
    Speck, JS
    APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3326 - 3328
  • [39] Heteroepitaxial evolution of AlN on GaN Grown by metal-organic chemical vapor deposition
    Gherasimova, M
    Cui, G
    Ren, Z
    Su, J
    Wang, XL
    Han, J
    Higashimine, K
    Otsuka, N
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) : 2921 - 2923
  • [40] Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition
    Manz, Christian
    Leone, Stefano
    Kirste, Lutz
    Ligl, Jana
    Frei, Kathrin
    Fuchs, Theodor
    Prescher, Mario
    Waltereit, Patrick
    Verheijen, Marcel A.
    Graff, Andreas
    Simon-Najasek, Michel
    Altmann, Frank
    Fiederle, Michael
    Ambacher, Oliver
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (03)