Semi-empirical neural network modeling of metal-organic chemical vapor deposition

被引:17
|
作者
Nami, Z
Misman, O
Erbil, A
May, GS
机构
[1] GEORGIA INST TECHNOL,SCH PHYS,ATLANTA,GA 30332
[2] GEORGIA INST TECHNOL,SCH ELECT & COMP ENGN,ATLANTA,GA 30332
基金
美国国家航空航天局;
关键词
D O I
10.1109/66.572084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal-organic chemical vapor deposition (MOCVD) is an important technique for growing thin films with various applications in electronics and optics, The development of accurate and efficient MOCVD process models is therefore desirable, since such models can be instrumental in improving process control in a manufacturing environment, This paper presents a semi-empirical MOCVD model based on ''hybrid'' neural networks, The model is constructed by characterizing the MOCVD of titanium dioxide (TiO2) films through the measurement of deposition rate over a range of deposition conditions by a statistically designed experiment in which susceptor and source temperature, flow rate of the carrier gas for the precursor and chamber pressure are varied, A modified backpropagation neural network is then trained on the experimental data to determine the value of the adjustable parameters in an analytical expression for the TiO2 deposition rate, In so doing, a general purpose methodology for deriving semi-empirical neural process models which take into account prior knowledge of the underlying process physics is developed.
引用
收藏
页码:288 / 294
页数:7
相关论文
共 50 条
  • [1] Metal-Organic Covalent Network Chemical Vapor Deposition for Gas Separation
    Boscher, Nicolas D.
    Wang, Minghui
    Perrotta, Alberto
    Heinze, Katja
    Creatore, Mariadriana
    Gleason, Karen K.
    ADVANCED MATERIALS, 2016, 28 (34) : 7479 - 7485
  • [2] Metal-organic chemical vapor deposition of ZnO
    Pan, M
    Fenwick, WE
    Strassburg, M
    Li, N
    Kang, H
    Kane, MH
    Asghar, A
    Gupta, S
    Varatharajan, R
    Nause, J
    El-Zein, N
    Fabiano, P
    Steiner, T
    Ferguson, I
    JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) : 688 - 693
  • [3] Metal-organic precursors and chemical vapor deposition
    Valade, L
    Teyssandier, F
    ACTUALITE CHIMIQUE, 1999, (02): : 14 - 21
  • [4] Study on stability of cavity in metal-organic chemical vapor deposition calculation based on neural network method
    Li, Jian
    Qin, Chao
    Wang, Jie
    Wang, Gang
    PHYSICS OF FLUIDS, 2022, 34 (10)
  • [5] MECHANISMS IN METAL-ORGANIC CHEMICAL VAPOR-DEPOSITION
    WILLIAMS, JO
    HOARE, RD
    KHAN, O
    PARROTT, MJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 330 (1610): : 183 - 193
  • [6] Metal-organic chemical vapor deposition growth of GaN
    Lu, Da-cheng
    Wang, Du
    Wang, Xiaohui
    Liu, Xianglin
    Dong, Jianrong
    Gao, Weibin
    Li, Chengji
    Li, Yunyan
    1600, Elsevier Science S.A., Lausanne, Switzerland (B29): : 1 - 3
  • [7] Metal-organic chemical vapor deposition of cerium oxide.
    Hoffman, DM
    Guan, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U103 - U103
  • [8] METAL-ORGANIC CHEMICAL-VAPOR-DEPOSITION GROWTH OF GAN
    LU, DC
    WANG, D
    WANG, XH
    LIU, XL
    DONG, JR
    GAO, WB
    LI, CJ
    LI, YY
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 29 (1-3): : 58 - 60
  • [9] Metal-Organic Chemical Vapor Deposition of Aluminum Yttrium Nitride
    Leone, Stefano
    Streicher, Isabel
    Prescher, Mario
    Stranak, Patrik
    Kirste, Lutz
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2023, 17 (10):
  • [10] Metal-Organic Chemical Vapor Deposition of Aluminum Scandium Nitride
    Leone, Stefano
    Ligl, Jana
    Manz, Christian
    Kirste, Lutz
    Fuchs, Theodor
    Menner, Hanspeter
    Prescher, Mario
    Wiegert, Joachim
    Zukauskaite, Agne
    Quay, Ruediger
    Ambacher, Oliver
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (01):