A Novel Graph-based Fisher Kernel Method for Semi-Supervised Learning

被引:14
|
作者
Rozza, Alessandro [1 ]
Manzo, Mario [2 ]
Petrosino, Alfredo [2 ]
机构
[1] Hyera Software, Res Grp, I-25030 Coccaglio, BS, Italy
[2] Univ Napoli Parthenope, Dipartimento Sci & Tecnol, I-80143 Naples, Italy
关键词
DISCRIMINANT;
D O I
10.1109/ICPR.2014.650
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based semi-supervised learning methods play a key role in machine learning applications, particularly when no parametric information or other prior knowledge is available. Given a graph whose nodes represent the points and the weighted edges the relations between them, the goal is to predict the values of all unlabeled nodes exploiting the information provided by both label and unlabeled nodes. In this paper, we propose a novel graph-based approach for semi-supervised binary classification. The algorithm extends the Fisher Subspace estimation approaches by adopting a kernel graph covariance measure. This similarity measure defines a relation between nodes generalizing both the shortest path and the commute time distance. This quantity is called the sum-over-paths covariance. Experiments on synthetic and real-world datasets highlight that the proposed algorithm achieves better results with respect to those obtained by state-of-the-art competitors.
引用
收藏
页码:3786 / 3791
页数:6
相关论文
共 50 条
  • [21] Graph-Based Semi-Supervised Learning with Redundant Views
    Gong, Yun-Chao
    Chen, Chuan-Liang
    Tian, Yin-Jie
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1393 - +
  • [22] Graph-based Semi-supervised Learning for Text Classification
    Widmann, Natalie
    Verberne, Suzan
    ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 59 - 66
  • [23] Learning Flexible Graph-Based Semi-Supervised Embedding
    Dornaika, Fadi
    El Traboulsi, Youssof
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 206 - 218
  • [24] Graph-Based Semi-Supervised Learning on Evolutionary Data
    Song, Yanglei
    Yang, Yifei
    Dou, Weibei
    Zhang, Changshui
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 467 - 476
  • [25] Graph-Based Semi-Supervised Learning as a Generative Model
    He, Jingrui
    Carbonell, Jaime
    Liu, Yan
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2492 - 2497
  • [26] Coded Distributed Graph-Based Semi-Supervised Learning
    Du, Ying
    Tan, Siqi
    Han, Kaifeng
    Jiang, Jiamo
    Wang, Zhiqin
    Chen, Li
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 367 - 372
  • [27] Pseudo Contrastive Learning for graph-based semi-supervised learning
    Lu, Weigang
    Guan, Ziyu
    Zhao, Wei
    Yang, Yaming
    Lv, Yuanhai
    Xing, Lining
    Yu, Baosheng
    Tao, Dacheng
    NEUROCOMPUTING, 2025, 624
  • [28] A Novel Graph-based Selection Wrapper for Learning Enhancement in a Semi-supervised Manner
    Chang, Zhenggang
    He, Jieyue
    Zhong, Wei
    Pan, Yi
    BIBMW: 2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOP, 2009, : 61 - +
  • [29] Self-weighted Multiple Kernel Learning for Graph-based Clustering and Semi-supervised Classification
    Kang, Zhao
    Lu, Xiao
    Yi, Jinfeng
    Xu, Zenglin
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2312 - 2318
  • [30] Active Model Selection for Graph-Based Semi-Supervised Learning
    Zhao, Bin
    Wang, Fei
    Zhang, Changshui
    Song, Yangqiu
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1881 - 1884