A Novel Graph-based Fisher Kernel Method for Semi-Supervised Learning

被引:14
|
作者
Rozza, Alessandro [1 ]
Manzo, Mario [2 ]
Petrosino, Alfredo [2 ]
机构
[1] Hyera Software, Res Grp, I-25030 Coccaglio, BS, Italy
[2] Univ Napoli Parthenope, Dipartimento Sci & Tecnol, I-80143 Naples, Italy
关键词
DISCRIMINANT;
D O I
10.1109/ICPR.2014.650
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based semi-supervised learning methods play a key role in machine learning applications, particularly when no parametric information or other prior knowledge is available. Given a graph whose nodes represent the points and the weighted edges the relations between them, the goal is to predict the values of all unlabeled nodes exploiting the information provided by both label and unlabeled nodes. In this paper, we propose a novel graph-based approach for semi-supervised binary classification. The algorithm extends the Fisher Subspace estimation approaches by adopting a kernel graph covariance measure. This similarity measure defines a relation between nodes generalizing both the shortest path and the commute time distance. This quantity is called the sum-over-paths covariance. Experiments on synthetic and real-world datasets highlight that the proposed algorithm achieves better results with respect to those obtained by state-of-the-art competitors.
引用
收藏
页码:3786 / 3791
页数:6
相关论文
共 50 条
  • [1] Graph-based semi-supervised learning and spectral kernel design
    Johnson, Ric
    Zhang, Tong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) : 275 - 288
  • [2] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [3] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [4] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [5] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    Knowledge and Information Systems, 2023, 65 : 543 - 570
  • [6] On Consistency of Graph-based Semi-supervised Learning
    Du, Chengan
    Zhao, Yunpeng
    Wang, Feng
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 483 - 491
  • [7] Fairness in graph-based semi-supervised learning
    Zhang, Tao
    Zhu, Tianqing
    Han, Mengde
    Chen, Fengwen
    Li, Jing
    Zhou, Wanlei
    Yu, Philip S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 543 - 570
  • [8] Fractional Graph-based Semi-Supervised Learning
    de Nigris, S.
    Bautista, E.
    Abry, P.
    Avrachenkov, K.
    Gonclaves, P.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 356 - 360
  • [9] Graph-based semi-supervised learning: A review
    Chong, Yanwen
    Ding, Yun
    Yan, Qing
    Pan, Shaoming
    NEUROCOMPUTING, 2020, 408 (408) : 216 - 230
  • [10] A general graph-based semi-supervised learning with novel class discovery
    Nie, Feiping
    Xiang, Shiming
    Liu, Yun
    Zhang, Changshui
    NEURAL COMPUTING & APPLICATIONS, 2010, 19 (04): : 549 - 555