共 50 条
Jones Polynomial and Knot Transitions in Hermitian and non-Hermitian Topological Semimetals
被引:95
|作者:
Yang, Zhesen
[1
,2
,3
]
Chiu, Ching-Kai
[4
,5
]
Fang, Chen
[1
,2
]
Hu, Jiangping
[1
,2
,4
,5
,6
]
机构:
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[6] South Bay Interdisciplinary Sci Ctr, Dongguan, Guangdong, Peoples R China
基金:
美国国家科学基金会;
关键词:
Polynomials;
D O I:
10.1103/PhysRevLett.124.186402
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Topological nodal line semimetals host stable chained, linked, or knotted line degeneracies in momentum space protected by symmetries. In this Letter, we use the Jones polynomial as a general topological invariant to capture the global knot topology of the oriented nodal lines. We show that every possible change in Jones polynomial is attributed to the local evolutions around every point where two nodal lines touch. As an application of our theory, we show that nodal chain semimetals with four touching points can evolve to a Hopf link. We extend our theory to 3D non-Hermitian multiband exceptional line semimetals. Our work provides a recipe to understand the transition of the knot topology for protected nodal lines.
引用
收藏
页数:6
相关论文