Jones Polynomial and Knot Transitions in Hermitian and non-Hermitian Topological Semimetals

被引:95
|
作者
Yang, Zhesen [1 ,2 ,3 ]
Chiu, Ching-Kai [4 ,5 ]
Fang, Chen [1 ,2 ]
Hu, Jiangping [1 ,2 ,4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[6] South Bay Interdisciplinary Sci Ctr, Dongguan, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Polynomials;
D O I
10.1103/PhysRevLett.124.186402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological nodal line semimetals host stable chained, linked, or knotted line degeneracies in momentum space protected by symmetries. In this Letter, we use the Jones polynomial as a general topological invariant to capture the global knot topology of the oriented nodal lines. We show that every possible change in Jones polynomial is attributed to the local evolutions around every point where two nodal lines touch. As an application of our theory, we show that nodal chain semimetals with four touching points can evolve to a Hopf link. We extend our theory to 3D non-Hermitian multiband exceptional line semimetals. Our work provides a recipe to understand the transition of the knot topology for protected nodal lines.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Classification of Exceptional Points and Non-Hermitian Topological Semimetals
    Kawabata, Kohei
    Bessho, Takumi
    Sato, Masatoshi
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [2] Scaling theory for non-Hermitian topological transitions
    Kartik, Y. R.
    Kumar, Ranjith
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (12)
  • [3] Non-Hermitian Topology in Hermitian Topological Matter
    Hamanaka, Shu
    Yoshida, Tsuneya
    Kawabata, Kohei
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [4] Non-Hermitian topological phase transitions controlled by nonlinearity
    Dai, Tianxiang
    Ao, Yutian
    Mao, Jun
    Yang, Yan
    Zheng, Yun
    Zhai, Chonghao
    Li, Yandong
    Yuan, Jingze
    Tang, Bo
    Li, Zhihua
    Luo, Jun
    Wang, Wenwu
    Hu, Xiaoyong
    Gong, Qihuang
    Wang, Jianwei
    NATURE PHYSICS, 2024, 20 (01) : 101 - 108
  • [5] Localization and topological transitions in non-Hermitian quasiperiodic lattices
    Tang, Ling-Zhi
    Zhang, Guo-Qing
    Zhang, Ling-Feng
    Zhang, Dan-Wei
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [6] Non-Hermitian topological phase transitions controlled by nonlinearity
    Tianxiang Dai
    Yutian Ao
    Jun Mao
    Yan Yang
    Yun Zheng
    Chonghao Zhai
    Yandong Li
    Jingze Yuan
    Bo Tang
    Zhihua Li
    Jun Luo
    Wenwu Wang
    Xiaoyong Hu
    Qihuang Gong
    Jianwei Wang
    Nature Physics, 2024, 20 : 101 - 108
  • [7] Non-Hermitian Spatial Symmetries and Their Stabilized Normal and Exceptional Topological Semimetals
    Rui, W. B.
    Zheng, Zhen
    Wang, Chenjie
    Wang, Z. D.
    PHYSICAL REVIEW LETTERS, 2022, 128 (22)
  • [8] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    OPTICAL MATERIALS EXPRESS, 2023, 13 (04) : 870 - 885
  • [9] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [10] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)