Preparation and gas-sensing properties of thermally stable mesoporous SnO2

被引:193
|
作者
Hyodo, T [1 ]
Nishida, N [1 ]
Shimizu, Y [1 ]
Egashira, M [1 ]
机构
[1] Nagasaki Univ, Fac Engn, Dept Mat Sci & Engn, Nagasaki 8528521, Japan
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2002年 / 83卷 / 1-3期
关键词
mesoporous SnO2; n-cetylpyridinium chloride; self-assembly; phosphoric acid; gas sensor;
D O I
10.1016/S0925-4005(01)01042-5
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ordered mesoporous SnO2 was prepared from sodium stannate by utilizing the self-assembly of a cationic surfactant (n-cetylpyridinium chloride (C16PyCl)) and its thermal stability was improved by the treatment with phosphoric acid (PA) prior to calcination. Under the most suitable preparation conditions, an ordered mesoporous structure (d(100) = ca. 3.2 nm) with a large specific surface area (ca. 305 m(2) g(-1)) was obtained after calcination of the resultant solid product (having ordered mesopores of d(100) = ca. 4.1 nm) at 600 degreesC for 5 h. The sensitivity of a thick film-type sensor (ca. 85 mum thick) fabricated with the mesoporous SnO2 to 500 ppm H-2 (maximum sensitivity k(M,H2) = 22.9 at 350 degreesC) was much higher than that to 500 ppm CO (k(M,CO) = 3.72 at 450 degreesC). The H-2 sensitivity of the mesoporous SnO2 sensor was superior to that of a conventional SnO2 sensor fabricated from tin oxalate, whereas the enhancement in H-2 sensitivity due to the development of mesopores was not so remarkable in spite of the large specific surface area (ca. 305 m(2) g(-1)) and small crystallite size (ca. 2 nm). The main reason for the unexpected low H-2 sensitivity may arise from agglomeration of mesoporous SnO2 particles, i.e. the potential barrier height at the boundaries between agglomerated particles may be less-sensitive to H-2, while that at grain boundaries Of SnO2 crystallites is highly sensitive. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 50 条
  • [21] Dispersive SnO2 nanosheets: Hydrothermal synthesis and gas-sensing properties
    Sun, Peng
    Cao, Yang
    Liu, Jun
    Sun, Yanfeng
    Ma, Jian
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (02) : 779 - 783
  • [22] Preparation of low resistance SnO2 powder and its gas-sensing characteristics
    Quan, Baofu
    Jin, Liyan
    Quan, Haiying
    Qi, Jinqing
    Sun, Liangyan
    Gongneng Cailiao/Journal of Functional Materials, 2000, 31 (03): : 273 - 275
  • [23] Preparation of thermally stable large mesoporous SnO2 powders by employing a triblock copolymer
    Shimizu, Y
    Jono, A
    Hyodo, T
    Egashira, M
    ELECTROCHEMISTRY, 2004, 72 (06) : 399 - 401
  • [24] Synthesis and Gas-sensing Performance of Nanosized SnO2
    WANG Shu-rong1
    2. Inst. Mat. Sci. & Chem. Engn.
    ChemicalResearchinChineseUniversities, 2005, (01) : 17 - 20
  • [25] Synthesis and gas-sensing performance of nanosized SnO2
    Wang, SR
    Wu, SH
    Shi, J
    Zheng, XC
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2005, 21 (01) : 17 - 20
  • [26] Preparation of g-C3N4/SnO2 nanocomposites and their gas-sensing properties
    Sun, Rui
    Lin, Zhidong
    Liu, Liming
    Zhang, Xiaowen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (27)
  • [27] Preparation and gas-sensing properties of SnO2/graphene quantum dots composites via solvothermal method
    Xiangfeng Chu
    Jiulin Wang
    Jun Zhang
    Yongping Dong
    Wenqi Sun
    Wangbing Zhang
    Linshan Bai
    Journal of Materials Science, 2017, 52 : 9441 - 9451
  • [28] Preparation and gas-sensing properties of SnO2/graphene quantum dots composites via solvothermal method
    Chu, Xiangfeng
    Wang, Jiulin
    Zhang, Jun
    Dong, Yongping
    Sun, Wenqi
    Zhang, Wangbing
    Bai, Linshan
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (16) : 9441 - 9451
  • [29] Synthesis of SnO2 nanoparticles using a solution plasma and their gas-sensing properties
    Zhang, Jianbo
    Hu, Xiulan
    Shi, Junjun
    Lu, Ping
    Shen, Xiaodong
    Xu, Peifeng
    Saito, Nagahiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (01)
  • [30] Preparation of SnO2 films with thermally stable nanoparticles
    Adamyan, AZ
    Adamian, ZN
    Aroutiounian, VM
    SENSORS, 2003, 3 (10): : 438 - 442