In present work, we investigate electronic properties of alloying percentage of In (x) Ga1-x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.
机构:
Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Jie, Shen
Bin, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Bin, Wei
Jing, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Jing, Zhou
Zhiqi, Shen Shirley
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Mat Sci & Engn, Highett, Vic 3190, AustraliaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Zhiqi, Shen Shirley
Xue Guang-Jie
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Xue Guang-Jie
Liu Han-Xing
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Liu Han-Xing
Wen, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China