Intermittent gas-liquid two-phase flow in helically coiled tubes

被引:12
|
作者
Zhu, Guangyu [1 ]
Yang, Xingtuan [1 ]
Jiang, Shengyao [1 ]
Zhu, Hongye [1 ]
机构
[1] Tsinghua Univ, Key Lab Adv Reactor Engn & Safety, Collaborat Innovat Ctr Adv Nucl Energy Technol, Inst Nucl & New Energy Technol,Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Intermittent flow; Helically coiled tube; Void fraction; Drift flux model; Slug frequency; VOID FRACTION CORRELATIONS; PRESSURE-DROP; SLUG FLOW; STATISTICAL PARAMETERS; PATTERNS;
D O I
10.1016/j.ijmultiphaseflow.2019.04.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper experimentally investigated the air-water intermittent flow in four helically coiled tubes with inner diameter of 0.016m, coil diameters of 0.24, 0.43 and 0.80m, and inclination angles of 5 degrees and 15 degrees A double conductivity probe was used to measure the hydrodynamic parameters at 48 points in the outlet cross section. The results showed that centrifugal force and Dean Vortices were the major mechanisms that influenced the void fraction distribution, elongated bubble length, slug length and slug frequency. Because of centrifugal force, the void fraction profile rotated an angle which approached to 90 degrees as liquid superficial velocity increased and coil diameter decreased. Due to the Dean Vortices, the elongated bubble length and slug length decreased as the coil diameter decreased, leading to an increase of slug frequency. A dimensionless parameter Z representing the ratio of the centrifugal force to the gravity was presented, which provides a quantitative criterion to evaluate the influence of centrifugal force. In terms of Z, correlations predicting the deviation angle, elongated bubble length and slug frequency were built, which met the experimental data well when the coil diameter is between 0.24 and 0.80m and the inclination angle between 5 and 15. Moreover, a drift flux model for HCTs was presented. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 50 条
  • [31] Numerical Simulations for Gas-Liquid Two-Phase Flow
    Matsumoto, Junichi
    Takada, Naoki
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2010, 55 (06) : 387 - 393
  • [32] TWO-PHASE GAS-LIQUID FLOW IN PIPE LINES
    FARADY, L
    MATOLCSY, K
    UJHIDY, A
    BABOS, B
    INTERNATIONAL CHEMICAL ENGINEERING, 1965, 5 (02): : 263 - &
  • [33] Numerical simulations for gas-liquid two-phase flow
    Matsumoto, Junichi
    Takada, Naoki
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2010, 55 (06): : 387 - 393
  • [34] On gas-liquid two-phase flow regimes in microchannels
    Akbar, MK
    Plummer, DA
    Ghiaasiaan, SM
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (05) : 855 - 865
  • [35] Frictional pressure drop correlation of steam-water two-phase flow in helically coiled tubes
    Su, Yuqing
    Li, Xiaowei
    Wu, Xinxin
    ANNALS OF NUCLEAR ENERGY, 2024, 208
  • [36] Experimental Study on Two-Phase Flow Instability in Parallel Helically Coiled Tubes Under Rolling Motion
    Wang, Ruohao
    Qi, Chao
    Ren, Jiaxing
    Qiao, Shouxu
    Tan, Sichao
    Tian, Ruifeng
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 6, ICONE31 2024, 2024,
  • [37] Gas-liquid two-phase flow in microchannels - Part I: two-phase flow patterns
    Triplett, KA
    Ghiaasiaan, SM
    Abdel-Khalik, SI
    Sadowski, DL
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1999, 25 (03) : 377 - 394
  • [38] GRAETZ PROBLEM FOR TWO-PHASE TWO-COMPONENT GAS-LIQUID FLOW IN VERTICAL TUBES.
    Vijay, M.M.
    Savic, P.
    Sims, G.E.
    1978,
  • [39] Gas-liquid two-phase flow pressure drop in flattened tubes: an experimental and numerical study
    Yaqop, Banipal Nanno
    JOURNAL OF THERMAL ENGINEERING, 2024, 10 (01): : 196 - 206
  • [40] Experimental characterization of mixing and flow field in the liquid plugs of gas-liquid flow in a helically coiled reactor
    Mueller, Conrad
    Kovats, Peter
    Zaehringer, Katharina
    EXPERIMENTS IN FLUIDS, 2021, 62 (09)