On the Well-Posedness for a Class of Pseudo-Differential Parabolic Equations

被引:1
|
作者
Delgado, Julio [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
关键词
Degenerate parabolic equation; Fractional diffusion; Nonhomogeneous calculus; Microlocal analysis;
D O I
10.1007/s00020-018-2432-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the well-posedness of the Cauchy problem for a class of pseudo-differential parabolic equations in the framework of Weyl-Hormander calculus. We establish regularity estimates, existence and uniqueness in the scale of Sobolev spaces H(m, g) adapted to the corresponding Hormander classes. Some examples are included for fractional parabolic equations and degenerate parabolic equations.
引用
收藏
页数:19
相关论文
共 50 条
  • [42] Stability for a class of nonlinear pseudo-differential equations
    Frankel, Michael
    Roytburd, Victor
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 425 - 430
  • [43] GLOBAL WELL-POSEDNESS OF SEMILINEAR HYPERBOLIC EQUATIONS, PARABOLIC EQUATIONS AND SCHRODINGER EQUATIONS
    Xu, Runzhang
    Chen, Yuxuan
    Yang, Yanbing
    Chen, Shaohua
    Shen, Jihong
    Yu, Tao
    Xu, Zhengsheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [44] Well-posedness results for triply nonlinear degenerate parabolic equations
    Andreianov, B.
    Bendahmane, M.
    Karlsen, K. H.
    Ouaro, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) : 277 - 302
  • [45] Well-posedness of parabolic equations containing hysteresis with diffusive thresholds
    Gurevich, Pavel
    Rachinskii, Dmitrii
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) : 87 - 109
  • [46] Well-posedness of initial value problems for singular parabolic equations
    Kersner, R
    Tesei, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 47 - 76
  • [47] Well-posedness theory for degenerate parabolic equations on Riemannian manifolds
    Graf, M.
    Kunzinger, M.
    Mitrovic, D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (08) : 4787 - 4825
  • [48] Well-posedness of parabolic equations containing hysteresis with diffusive thresholds
    Pavel Gurevich
    Dmitrii Rachinskii
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 87 - 109
  • [49] Well-posedness of fully nonlinear and nonlocal critical parabolic equations
    Xicheng Zhang
    Journal of Evolution Equations, 2013, 13 : 135 - 162
  • [50] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Shaoyong Lai
    Haibo Yan
    Yang Wang
    Boundary Value Problems, 2014