Functional mixed-effects model for periodic data

被引:19
|
作者
Qin, L [1 ]
Guo, WS
机构
[1] Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98109 USA
[2] Univ Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
关键词
functional data analysis; Kalman filter; periodic constraint; periodic spline; smoothing spline; state space model;
D O I
10.1093/biostatistics/kxj003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Periodic data are frequently collected in biomedical experiments. We consider the underlying periodic curves giving rise to these data, and account for the periodicity in their functional model to improve estimation and inference. We propose to incorporate the periodic constraint in the functional mixed-effects model setting. Both the fixed functional effects and random functional effects are modeled in the same periodic functional space, hence the population-average estimates and subject-specific predictions are all periodic. An efficient algorithm is given to estimate the proposed model by an O(N) modified Kalman filtering and smoothing algorithm. The proposed method is evaluated in different scenarios through simulations. Treatments to none-full period data and missing observations along the period are also given. Analysis of a cortisol data set obtained from a study on fibromyalgia is conducted as illustration.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [21] Linear mixed-effects model for longitudinal complex data with diversified characteristics
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    Lu, Shan
    Saporta, Gilbert
    JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2020, 5 (02) : 105 - 124
  • [22] A Bayesian approach to functional mixed-effects modeling for longitudinal data with binomial outcomes
    Kliethermes, Stephanie
    Oleson, Jacob
    STATISTICS IN MEDICINE, 2014, 33 (18) : 3130 - 3146
  • [23] Estimation and inference in functional mixed-effects models
    Antoniadis, Anestis
    Sapatinas, Theofanis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4793 - 4813
  • [24] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [25] Linear mixed-effects model for longitudinal complex data with diversified characteristics
    Zhichao Wang
    Huiwen Wang
    Shanshan Wang
    Shan Lu
    Gilbert Saporta
    Journal of Management Science and Engineering, 2020, 5 (02) : 105 - 124
  • [26] A mixed-effects location-scale model for ordinal questionnaire data
    Hedeker D.
    Mermelstein R.J.
    Demirtas H.
    Berbaum M.L.
    Health Services and Outcomes Research Methodology, 2016, 16 (3) : 117 - 131
  • [27] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    BMC Medical Research Methodology, 24
  • [28] A mixed-effects Bayesian regression model for multivariate group testing data
    Mcmahan, Christopher S.
    Joyner, Chase N.
    Tebbs, Joshua M.
    Bilder, Christopher R.
    BIOMETRICS, 2025, 81 (01)
  • [29] Estimation in mixed-effects functional ANOVA models
    Rady, E. A.
    Kilany, N. M.
    Eliwa, S. A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 133 : 346 - 355
  • [30] FMEM: FUNCTIONAL MIXED-EFFECTS MODELS FOR LONGITUDINAL FUNCTIONAL RESPONSES
    Zhu, Hongtu
    Chen, Kehui
    Luo, Xinchao
    Yuan, Ying
    Wang, Jane-Ling
    STATISTICA SINICA, 2019, 29 (04) : 2007 - 2033