Human mesenchymal stem cells derived from umbilical cord and bone marrow exert immunomodulatory effects in different mechanisms

被引:25
|
作者
Song, Yunejin [1 ,2 ,3 ]
Lim, Jung-Yeon [1 ,2 ,4 ]
Lim, Taekyu [5 ]
Im, Keon-Il [1 ,2 ]
Kim, Nayoun [1 ,2 ]
Nam, Young-Sun [1 ,2 ]
Jeon, Young-Woo [1 ,2 ,6 ]
Shin, Jong Chul [7 ]
Ko, Hyun Sun [8 ]
Park, In Yang [8 ]
Cho, Seok-Goo [1 ,2 ,6 ,9 ]
机构
[1] Catholic Univ Korea, Coll Med, Inst Translat Res & Mol Imaging, Seoul 06591, South Korea
[2] Catholic Univ Korea, Coll Med, Lab Immune Regulat, Convergent Res Consortium Immunol Dis, Seoul 06591, South Korea
[3] Catholic Univ Korea, Coll Med, Dept Biomed & Hlth Sci, Seoul 06591, South Korea
[4] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
[5] Vet Hlth Serv Med Ctr, Dept Internal Med, Div Hematol Oncol, Seoul 05368, South Korea
[6] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Dept Hematol,Catholic Blood & Marrow Transplantat, Seoul 06591, South Korea
[7] CHA Univ, CHA Bundang Med Ctr, Dept Obstet & Gynecol, Seongnam 13496, South Korea
[8] Catholic Univ Korea, Coll Med, Dept Obstet & Gynecol, Seoul 06591, South Korea
[9] Catholic Univ Korea, Coll Med, Dept Internal Med, Div Hematol, Banpodaero 222, Seoul 06591, South Korea
来源
WORLD JOURNAL OF STEM CELLS | 2020年 / 12卷 / 09期
关键词
Mesenchymal stem cells; Graft-versus-host disease; Umbilical cord; Cell therapy; Xenogeneic mouse model; Immunomodulation; SUPPRESS T-LYMPHOCYTE; VERSUS-HOST-DISEASE; STROMAL CELLS; INTERFERON-GAMMA; GROWTH-FACTOR; PROLIFERATION; ANTIGEN; BLOOD; TRANSPLANTATION; INTERLEUKIN-6;
D O I
10.4252/wjsc.v12.i9.1032
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BACKGROUND Mesenchymal stem cells (MSCs) are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties. Although human bone marrow-derived MSCs (BM-MSCs) were the most widely used MSCs in cell therapy until recently, MSCs derived from human umbilical cords (UC-MSCs) have gained popularity as cell therapy material for their ethical and noninvasive collection. AIM To investigate the difference in mechanisms of the immunosuppressive effects of UC-MSCs and BM-MSCs. METHODS To analyze soluble factors expressed by MSCs, such as indolamine 2,3-dioxygenase, cyclooxygenase-2, prostaglandin E2 and interleukin (IL)-6, inflammatory environmentsin vitrowere reconstituted with combinations of interferon-gamma (IFN-gamma), tumor necrosis factor alpha and IL-1 beta or with IFN-gamma alone. Activated T cells were cocultured with MSCs treated with indomethacin and/or anti-IL-10. To assess the ability of MSCs to inhibit T helper 17 cells and induce regulatory T cells, induced T helper 17 cells were cocultured with MSCs treated with indomethacin or anti-IL-10. Xenogeneic graft-versus-host disease was induced in NOG mice (NOD/Shi-scid/IL-2R gamma(null)) and UC-MSCs or BM-MSCs were treated as cell therapies. RESULTS Our data demonstrated that BM-MSCs and UC-MSCs shared similar phenotypic characteristics and immunomodulation abilities. BM-MSCs expressed more indolamine 2,3-dioxygenase after cytokine stimulation with different combinations of IFN-gamma, tumor necrosis factor alpha-alpha and IL-1 beta or IFN-gamma alone. UC-MSCs expressed more prostaglandin E2, IL-6, programmed death-ligand 1 and 2 in thein vitroinflammatory environment. Cyclooxygenase-2 and IL-10 were key factors in the immunomodulatory mechanisms of both MSCs. In addition, UC-MSCs inhibited more T helper 17 cells and induced more regulatory T cells than BM-MSCs. UC-MSCs and BM-MSCs exhibited similar effects on attenuating graft-versus-host disease. CONCLUSION UC-MSCs and BM-MSCs exert similar immunosuppressive effects with different mechanisms involved. These findings suggest that UC-MSCs have distinct immunoregulatory functions and may substitute BM-MBSCs in the field of cell therapy.
引用
收藏
页码:1032 / 1049
页数:18
相关论文
共 50 条
  • [31] The effects of hyperthermia on the immunomodulatory properties of human umbilical cord vein mesenchymal stem cells (MSCs)
    Hesami, Shilan
    Mohammadi, Mehdi
    Rezaee, Mohamad Ali
    Jalili, Ali
    Rahmani, Mohammad Reza
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2017, 33 (07) : 705 - 712
  • [32] Differentiation of umbilical cord mesenchymal stem cells into steroidogenic cells in comparison to bone marrow mesenchymal stem cells
    Wei, X.
    Peng, G.
    Zheng, S.
    Wu, X.
    CELL PROLIFERATION, 2012, 45 (02) : 101 - 110
  • [33] Human Foreskin Fibroblasts Exert Immunomodulatory Properties by a Different Mechanism to Bone Marrow Stromal/Stem Cells
    Wada, Naohisa
    Bartold, Peter Mark
    Gronthos, Stan
    STEM CELLS AND DEVELOPMENT, 2011, 20 (04) : 647 - 659
  • [34] Human umbilical cord mesenchymal stem cells-derived exosomes exert anti-inflammatory effects on osteoarthritis chondrocytes
    Wang, Shichao
    Jiang, Wenyue
    Lv, Shuang
    Sun, Zhicheng
    Si, Lihui
    Hu, Jinxin
    Yang, Yang
    Qiu, Dingbang
    Liu, Xiaobin
    Zhu, Siying
    Yang, Lunhao
    Qi, Ling
    Chi, Guangfan
    Wang, Guiqing
    Li, Pengdong
    Liao, Baojian
    AGING-US, 2023, 15 (18): : 9544 - 9560
  • [35] Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue
    Heo, June Seok
    Choi, Youjeong
    Kim, Han-Soo
    Kim, Hyun Ok
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2016, 37 (01) : 115 - 125
  • [36] Proteomic Validation of Multifunctional Molecules in Mesenchymal Stem Cells Derived from Human Bone Marrow, Umbilical Cord Blood and Peripheral Blood
    Kim, Jumi
    Shin, Jeong Min
    Jeon, Young Joo
    Chung, Hyung Min
    Chae, Jung-Il
    PLOS ONE, 2012, 7 (05):
  • [37] Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord
    Fan, Cun-Gang
    Zhang, Qing-jun
    Zhou, Jing-ru
    STEM CELL REVIEWS AND REPORTS, 2011, 7 (01) : 195 - 207
  • [38] Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord
    Cun-Gang Fan
    Qing-jun Zhang
    Jing-ru Zhou
    Stem Cell Reviews and Reports, 2011, 7 : 195 - 207
  • [39] Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice
    Zhu, Xu
    Wang, Zhen
    Sun, Yi Eve
    Liu, Yuchen
    Wu, Zhourui
    Ma, Bei
    Cheng, Liming
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2022, 15
  • [40] Differentially expressed genes analysis of mesenchymal stem cells from human umbilical cord blood and bone marrow
    Kim, Hyun Jae
    Lee, Seung Ku
    Cha, Yun-Yi
    Kim, Hyoun Geun
    Yun, Hong-Shik
    Kang, Hyun-Jun
    Kim, Kyoung Yeon
    Kwack, KyuBum
    FASEB JOURNAL, 2007, 21 (05): : A229 - A229