Generating toric noncommutative crepant resolutions

被引:16
|
作者
Bocklandt, Raf [1 ]
机构
[1] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Noncommutative algebra; Toric geometry; Noncommutative geometry; FLOPS;
D O I
10.1016/j.jalgebra.2012.03.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an algorithm that finds all toric noncommutative crepant resolutions of a given toric 3-dimensional Gorenstein singularity. The algorithm embeds the quivers of these algebras inside a real 3-dimensional torus such that the relations are homotopy relations. One can project these embedded quivers down to a 2-dimensional torus to obtain the corresponding dimer models. We discuss some examples and use the algorithm to show that all toric noncommutative crepant resolutions of a finite quotient of the conifold singularity can be obtained by mutating one basic dimer model. We also discuss how this algorithm might be extended to higher dimensional singularities. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 147
页数:29
相关论文
共 50 条
  • [31] Crepant Resolutions of Stratified Varieties via Gluing
    Kaplan, Daniel
    Schedler, Travis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (17) : 12161 - 12200
  • [32] FLOPS AND MUTATIONS FOR CREPANT RESOLUTIONS OF POLYHEDRAL SINGULARITIES
    Nolla de Celis, Alvaro
    Sekiya, Yuhi
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (01) : 1 - 45
  • [33] On steady non-commutative crepant resolutions
    Iyama, Osamu
    Nakajima, Yusuke
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (02) : 457 - 471
  • [34] The Crepant Transformation Conjecture for toric complete intersections
    Coates, Tom
    Iritani, Hiroshi
    Jiang, Yunfeng
    ADVANCES IN MATHEMATICS, 2018, 329 : 1002 - 1087
  • [35] Euler Characteristics of Crepant Resolutions of Weierstrass Models
    Mboyo Esole
    Patrick Jefferson
    Monica Jinwoo Kang
    Communications in Mathematical Physics, 2019, 371 : 99 - 144
  • [36] Euler Characteristics of Crepant Resolutions of Weierstrass Models
    Esole, Mboyo
    Jefferson, Patrick
    Kang, Monica Jinwoo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 99 - 144
  • [37] Noncommutative resolutions of discriminants
    Buchweitz, Ragnar-Olaf
    Faber, Eleonore
    Ingalls, Colin
    REPRESENTATIONS OF ALGEBRAS, 2018, 705 : 37 - 52
  • [38] Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings
    Dao, Hailong
    Faber, Eleonore
    Ingalls, Colin
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (03) : 633 - 664
  • [39] Toric resolutions of heterotic orbifolds
    Nibbelink, Stefan Groot
    Ha, Tae-Won
    Trapletti, Michele
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [40] Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings
    Hailong Dao
    Eleonore Faber
    Colin Ingalls
    Algebras and Representation Theory, 2015, 18 : 633 - 664