Robust estimation for ordinal regression

被引:12
|
作者
Croux, C. [1 ]
Haesbroeck, G. [2 ]
Ruwet, C. [2 ]
机构
[1] Katholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
[2] Univ Liege, Dept Math, Liege, Belgium
关键词
Breakdown point; Diagnostic plot; Influence function; Ordinal regression; Weighted maximum likelihood; Robust distances; GENERALIZED LINEAR-MODELS; LATENT VARIABLE MODELS; LOGISTIC-REGRESSION; BINARY REGRESSION; BOUNDED-INFLUENCE; BREAKDOWN;
D O I
10.1016/j.jspi.2013.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ordinal regression is used for modelling an ordinal response variable as a function of some explanatory variables. The classical technique for estimating the unknown parameters of this model is Maximum Likelihood (ML). The lack of robustness of this estimator is formally shown by deriving its breakdown point and its influence function. To robustify the procedure, a weighting step is added to the Maximum Likelihood estimator, yielding an estimator with bounded influence function. We also show that the loss in efficiency due to the weighting step remains limited. A diagnostic plot based on the Weighted Maximum Likelihood estimator allows to detect outliers of different types in a single plot. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1486 / 1499
页数:14
相关论文
共 50 条
  • [41] Robust estimation in the logistic regression model
    Kordzakhia, N
    Mishra, GD
    Reiersolmoen, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 98 (1-2) : 211 - 223
  • [42] Robust estimation of multivariate regression model
    Li, Jiantao
    Zheng, Min
    STATISTICAL PAPERS, 2009, 50 (01) : 81 - 100
  • [43] Robust estimation in structured linear regression
    Mili, L
    Coakley, CW
    ANNALS OF STATISTICS, 1996, 24 (06): : 2593 - 2607
  • [44] Robust estimation of multivariate regression model
    Jiantao Li
    Min Zheng
    Statistical Papers, 2009, 50 : 81 - 100
  • [45] ROBUST SAMPLING STRATEGIES FOR REGRESSION ESTIMATION
    OUYANG, Z
    SCHREUDER, HT
    LI, HG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (11) : 3309 - 3326
  • [46] ESTIMATION OF NONPARAMETRIC ORDINAL LOGISTIC REGRESSION MODEL USING LOCAL MAXIMUM LIKELIHOOD ESTIMATION
    Rifada, Marisa
    Chamidah, Nur
    Ratnasari, Vita
    Purhadi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [47] Copula Ordinal Regression for Joint Estimation of Facial Action Unit Intensity
    Walecki, Robert
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Pantic, Maja
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4902 - 4910
  • [48] Rank consistent ordinal regression for neural networks with application to age estimation
    Cao, Wenzhi
    Mirjalili, Vahid
    Raschka, Sebastian
    PATTERN RECOGNITION LETTERS, 2020, 140 : 325 - 331
  • [49] Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
    Zuhdi, Shaifudin
    Saputro, Dewi Retno Sari
    Widyaningsih, Purnami
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [50] Scoring procedures for multiple criteria decision aiding with robust and stochastic ordinal regression
    Kadzinski, Milosz
    Michalski, Marcin
    COMPUTERS & OPERATIONS RESEARCH, 2016, 71 : 54 - 70