Learning Urban Driving Policies using Deep Reinforcement Learning

被引:13
|
作者
Agarwal, Tanmay [1 ]
Arora, Hitesh [1 ]
Schneider, Jeff [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
关键词
D O I
10.1109/ITSC48978.2021.9564412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous driving in urban settings requires intelligent decision-making ability to deal with complex behaviors in dense traffic scenarios. Traditional modular methods address these challenges using classical rule-based approaches but require heavy engineering efforts to scale to diverse and unseen environments. Recently, Deep Reinforcement Learning (DRL) has provided a data-driven framework for decision-making and has been applied to urban driving. However, prior works that employ end-to-end DRL with high-dimensional sensor inputs report poor performance on complex urban driving tasks. In this work, we present a framework that combines modular and DRL approaches to solve the planning and control subproblems in urban driving. We design an input representation that enables our DRL agent to learn the complex urban driving tasks of lane-following, driving around turns and intersections, avoiding collisions with other dynamic actors, and following traffic light rules. The agent learned using our proposed approach achieves state-of-the-art performance on the NoCrash benchmark in the CARLA urban driving simulator.
引用
收藏
页码:607 / 614
页数:8
相关论文
共 50 条
  • [21] Overtaking Maneuvers in Simulated Highway Driving using Deep Reinforcement Learning
    Kaushik, Meha
    Prasad, Vignesh
    Krishna, K. Madhava
    Ravindran, Balaraman
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1885 - 1890
  • [22] Unexpected Collision Avoidance Driving Strategy Using Deep Reinforcement Learning
    Kim, Myounghoe
    Lee, Seongwon
    Lim, Jaehyun
    Choi, Jongeun
    Kang, Seong Gu
    IEEE ACCESS, 2020, 8 : 17243 - 17252
  • [23] Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models
    Ghadirzadeh, Ali
    Poklukar, Petra
    Arndt, Karol
    Finn, Chelsea
    Kyrki, Ville
    Kragic, Danica
    Björkman, Mårten
    Journal of Machine Learning Research, 2022, 23
  • [24] Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models
    Ghadirzadeh, Ali
    Poklukar, Petra
    Arndt, Karol
    Finn, Chelsea
    Kyrki, Ville
    Kragic, Danica
    Bjorkman, Marten
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [25] Reinforcement Learning and Deep Learning Based Lateral Control for Autonomous Driving
    Li, Dong
    Zhao, Dongbin
    Zhang, Qichao
    Chen, Yaran
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (02) : 83 - 98
  • [26] LFQ: Online Learning of Per-flow Queuing Policies using Deep Reinforcement Learning
    Bachl, Maximilian
    Fabini, Joachim
    Zseby, Tanja
    PROCEEDINGS OF THE 2020 IEEE 45TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2020), 2020, : 417 - 420
  • [27] Learning positioning policies for mobile manipulation operations with deep reinforcement learning
    Ander Iriondo
    Elena Lazkano
    Ander Ansuategi
    Andoni Rivera
    Iker Lluvia
    Carlos Tubío
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3003 - 3023
  • [28] Learning positioning policies for mobile manipulation operations with deep reinforcement learning
    Iriondo, Ander
    Lazkano, Elena
    Ansuategi, Ander
    Rivera, Andoni
    Lluvia, Iker
    Tubio, Carlos
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3003 - 3023
  • [29] Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
    Chen, Jianyu
    Li, Shengbo Eben
    Tomizuka, Masayoshi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5068 - 5078
  • [30] Adversarial Deep Reinforcement Learning for Improving the Robustness of Multi-agent Autonomous Driving Policies
    Sharif, Aizaz
    Marijan, Dusica
    2022 29TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC, 2022, : 61 - 70