Quantum-classical correspondence via Lionville dynamics .2. Correspondence for chaotic Hamiltonian systems

被引:45
|
作者
Wilkie, J
Brumer, P
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON
来源
PHYSICAL REVIEW A | 1997年 / 55卷 / 01期
关键词
D O I
10.1103/PhysRevA.55.43
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We prove quantum-classical correspondence for bound conservative classically chaotic Hamiltonian systems. In particular, quantum Liouville spectral projection operators and spectral densities, and hence classical dynamics, are shown to approach their classical analogs in the h-->0 limit. Correspondence is shown to occur via the elimination of essential singularities. In addition, applications to matrix elements of observables in chaotic systems are discussed.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [21] Quantum-classical Correspondence in Steady States of Nonadiabatic Systems
    Fujii, Mikiya
    Yamashita, Koichi
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015), 2015, 1702
  • [22] QUANTUM-CLASSICAL CORRESPONDENCE IN NONINTEGRABLE SYSTEMS WITH CONTINUOUS PARAMETER
    TAKAMI, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1994, (116): : 303 - 309
  • [23] Decoherence in a classically chaotic quantum system: Entropy production and quantum-classical correspondence
    Monteoliva, D
    Paz, JP
    PHYSICAL REVIEW E, 2001, 64 (05): : 13 - 056238
  • [24] Quantum-Classical Correspondence of Shortcuts to Adiabaticity
    Okuyama, Manaka
    Takahashi, Kazutaka
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (04)
  • [25] The Boltzmann distribution and the quantum-classical correspondence
    Alterman, Sam
    Choi, Jaeho
    Durst, Rebecca
    Fleming, Sarah M.
    Wootters, William K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (34)
  • [26] Anomalous transport and quantum-classical correspondence
    Sundaram, B
    Zaslavsky, GM
    PHYSICAL REVIEW E, 1999, 59 (06): : 7231 - 7234
  • [27] Quantum-classical correspondence for the inverted oscillator
    Mustapha Maamache
    Jeong Ryeol Choi
    Chinese Physics C, 2017, 41 (11) : 62 - 68
  • [28] Quantum-classical correspondence of the relativistic equations
    Liang, ML
    Sun, YJ
    ANNALS OF PHYSICS, 2004, 314 (01) : 1 - 9
  • [29] HIGHER RANK QUANTUM-CLASSICAL CORRESPONDENCE
    Hilgert, Joachim
    Weich, Tobias
    Wolf, Lasse l.
    ANALYSIS & PDE, 2023, 16 (10): : 2241 - 2265
  • [30] Quantum-classical correspondence in polygonal billiards
    Wiersig, J
    PHYSICAL REVIEW E, 2001, 64 (02): : 8 - 262128